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SUMMARY

Cities provide unique opportunities for integrating humans into ecology. Using data from a socio-ecological
inventory of metropolitan Phoenix, Arizona, we explore the contribution of human-related variables to explaining
observed variation in soil nitrate-N (NO3--N) and total carbon (C) concentrations across the city, agricultural
fields, surrounding desert, and mixed regions. Conventional modeling approaches in such a setting would lead to
examination of spatial relationships over the entire study area or on subsets of the data independently. However,
the spatial relationships for NO3--N and C may be different in each of these regions. Here we estimate the
correlation coefficients for influential variables toward soil NO3--N and C across the entire region, while at the
same time accounting for potentially differing spatial patterns in each of these regions. Soil NO3--N shows
markedly greater spatial autocorrelation in the desert regions, while the soil C shows varying amounts of spatial
relationships in the different regions. Copyright # 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The Central Arizona-Phoenix Long Term Ecological Research (CAP-LTER) program was established

specifically to understand the functioning of an urban ecosystem (Kaiser, 2001). The CAP study region

is a spatially heterogeneous mixture of various urban (e.g. residential, commercial, industrial) land

uses, agricultural, and undeveloped Sonoran desert situated on a large alluvial plain with remnant

mountains providing the topographic template upon which the city has developed.

In order to best quantify key ecological characteristics of such a large, complex study site, a

randomized tessellation stratified design was employed, by superimposing a grid subdivided into

4� 4 km2 squares on the study area. This scheme produced 462 sampling units across the entire area,
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over half of which fell outside the current urban core area. A random sample was assigned to every

square inside the urban core and every third square outside of the urban core (n ¼ 206). Access was

denied to two of these sites and at ten more sites there are missing data for our variables of interest

leaving n ¼ 194.

These sites can be broken into five land use categories: urban (nurban ¼ 89), desert (ndesert ¼ 66),

agriculture (nagr ¼ 22), near roads and highways (nhighway ¼ 11), and a mixed class (nmixed ¼ 6)

indicating that more than one of the land use types were found in a survey plot. There are small sample

sizes for near roads and mixed, thus we combine these two categories to produce a newmixed category

with 17 sites (nmixed ¼ 17) (Figure 1). Soils were sampled using a hand-coring device at four random

locations within a 30� 30m2 field plot and the four samples combined to give one sample for each per

site as detailed in Hope et al. (2005).

We are interested in concentrations of nitrate-N (NO3--N) and total carbon (C) in soils in the top

10 cm of the soil profile measured in mg/kg dry weight of soil. Nitrate is the dominant form of

available inorganic N in these soils, which, along with water, co-limits plant growth in southwestern

desert ecosystems (Schlesinger et al., 1996) and therefore represents an important ‘bottom-up’ control

of ecosystem structure and dynamics.

Hope et al. (2005) reported results for NO3--N and NH4--N data previously. In their study, each of

the response variables (NO3--N and NH4--N) were modeled using 12 predictor variables chosen to

represent the main geophysical, geographic, and human characteristics of the study site. The original

Figure 1. Land use types
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predictor variables were site latitude, site longitude, number of years since last land use change, an

indicator variable for if the land had ever been used in agriculture, elevation, distance from urban

center, slope of the land, per cent impervious surface on the plot, per cent lawn cover on the plot,

an indicator variable showing type of irrigation, median family income, and population density of the

area. They examined the response variables on the site as a whole (all 194 sites) as well as for desert

(n ¼ 66) and urban (n ¼ 89) separately. Backwards elimination was primarily used to determine

influential variables. The results of their analysis are presented in Section 3 for NO3--N. We have used

the same technique for C in Section 4 for a comparison standard. The residuals were examined for

spatial autocorrelation between the sites. If spatial correlation was found, this relationship was

included in the error structure. If no spatial correlation was found, a standard multiple regression

analysis was performed.

Hope et al. (2005) describe that spatial correlations were not found between sites for any of the

response variables when only the urban sites were explored. This likely results from a wide variety of

land uses and influences on soil chemistry across the Phoenix metropolitan area. Spatial correlations

were found for NO3--N and C in the desert sites while small sample sizes restrain agricultural,

transportation, and mixed sites from being studied separately. Due to the marked differences between

urban and desert sites, it is not surprising that there was no significant spatial correlation when

examining the entire region using only a single correlation structure. However, we know there are

significant spatial correlations in some subareas of the region (i.e., in the desert sites). Therefore, we

sought to improve upon simply pooling the data together and checking for spatial correlation among

all the sites. We do this by proposing a model that estimates the influence of the covariates over the

region as a whole, while allowing for separate spatial covariance structures in the different regions.

With this approach, we are able to use the distinct information from each of the regions, while

retaining the factors that influence the region as a whole. We will re-analyze the NO3--N of Hope et al.

(2005) and compare our results to those in the aforementioned paper. We will perform a similar

analysis for C and execute a similar comparison.

We will use an urban region, a desert region, an agriculture region, and the class we call mixed that

combines the transportation and the original mixed class. This type of model will require a relatively

large number of parameters. A Bayesian hierarchical model offers many advantages for this structure.

It accounts for the variability of all parameters in the model and provides a coherent framework in

which to incorporate scientific reasoning and experience explicitly in the model. For example, we

believe that there is more spatial correlation among the desert sites than for the urban sites. This was

true for NO3--N and we expect to see similar relationships in C. The Bayesian approach to spatial

statistics has seen a lot of recent additions to the literature. For a very good overview of such

techniques see Banerjee et al. (2004) and Wikle and Royle (2004).

In Section 2, we introduce the Bayesian model for our analysis. We then use this model in Section 3

for the NO3--N data. A similar model is used in Section 4 for C. We make concluding remarks in

Section 5.

2. MODELING SPATIAL CORRELATION FROM DISTINCT AREAS

We want a model to estimate the regression coefficients while allowing for differing spatial

correlations in distinct regions. To allow for this we set up a Bayesian hierarchical model. Using

the flexibility of a hierarchical Bayesian model, we can incorporate these differing spatial structures

into one model.
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We first model the data or likelihood. Let Ys be the response of interest at each spatial location s for

s ¼ 1; . . . ; n where Y ¼ ðY1; . . . ; YnÞ0. We assume this response variable, Ys, is normally distributed

with mean �s and variance �s. Let � ¼ ð�1; . . . ; �nÞ0 and let � ¼ Xbþ Z such that

Y � NðXbþ Z;�Þ

with � being a diagonal matrix where the first n1 elements are �1, the next n2 elements being �2, the
next n3 elements consist of �3 and the remaining n4 elements being �4. X is our n� ðk þ 1Þ design
matrix that will contain the covariates of interest and a vector of 1s for the intercept. b is the

ðk þ 1Þ � 1 vector of regression coefficients. Z is the n� 1 random component that allows for spatial

relationships between sites.

In introducing additional notation, we also write that Y ¼ ðY0
1;Y

0
2;Y

0
3;Y

0
4Þ0 breaks Y into its’ four

regions and are nj � 1 for j ¼ 1; . . . ; 4. Z ¼ ðZ0
1;Z

0
2;Z

0
3;Z

0
4Þ0 breaks Z into its’ four regions and are

nj � 1 for j ¼ 1; . . . ; 4. X ¼ ðX0
1;X

0
2;X

0
3;X

0
4Þ0 breaks X into its’ four regions where Xj is nj � ðk þ 1Þ.

In the next stage of the hierarchical model, we assign priors to these processes. We have selected the

explanatory variables in X that we believe will have a significant impact on Y. The specific

explanatory variables for NO3--N and C will be discussed in their respective sections later in the

article. We will assume no additional information toward these variables and assign b the non-

informative prior �i ¼ 1 for i ¼ 0; . . . ; k.
Next we model the random component Z ¼ ðZ1; . . . ; ZnÞ0. In Z we allow for spatial correlations

between sites. We break Z into four regions, Z ¼ ðZ0
1;Z

0
2;Z

0
3;Z

0
4Þ0, to specify that there will be a

different spatial relationship in each of the regions. For each region, let Zsj for sj ¼ 1; . . . ; nj and
j ¼ 1; . . . ; 4 each follow a normal distribution with a mean of zero and variance �2

j . The correlation

between sites is CorrðZðsjÞ; Zðs0jÞÞ ¼ k�jðksj � s0jkÞ. The correlation function depends on parameter �j
and the distance between locations sj and s0j: We will assume that sites from differing sections are not

related over space. Thus, k�jðksj � s0jkÞ ¼ 0 for j 6¼ k with j; k ¼ 1; . . . ; 4. The soil content in the urban
sites has changed drastically over time and we do not foresee any relationship between these sites and

the desert, agricultural, or mixed sites. Similarly, the soil content in the agricultural sites is assumed to

have changed enough from the desert sites, that we do not feel we need to include a relationship. For

the remaining combinations between mixed and agriculture as well as mixed and desert, this

assumption is based on modeling convenience.

A common correlation model is the single parameter exponential function given by

k�jðks� s0kÞ ¼ e�ks�s0k=�j

Many other correlation functions can be considered (see Cressie, 1993). For our purposes, this one

parameter model works well. In addition, estimates of the spatial parameters are not the main goal of

this analysis. We are using this to account for the variability and to better estimate the b parameters.

Under this model, the correlation between two points decays exponentially as the distance between

those points increases. The rate of decay is controlled by �j. We will assume this fits each of the four

regions as the rates of decay are denoted by �j for j ¼ 1; . . . ; 4.
Now that we have modeled the mean structure ofY, we turn to the variance. The common conjugate

prior for the variance of a normal distribution is the inverse gamma distribution (Gelman et al., 1995).

We choose a proper, but relatively flat prior and let �j � IGð2:01; 1:01Þ which has a mean of 1 and a

variance of 100 for j ¼ 1; . . . ; 4.

520 J. J. OLESON ET AL.

Copyright # 2006 John Wiley & Sons, Ltd. Environmetrics 2006; 17: 517–525



Finally, we set the hyperprior distributions. The �2
j with j ¼ 1; . . . ; 4 are the variances of normal

distributions and we assume each of them to be IGð2:01; 1:01Þ as well. For the spatial dependence

parameter �j for j ¼ 1; . . . ; 4 Berger et al. (2001) suggest a reference prior since many common

improper priors yield an improper posterior distribution. We have some prior knowledge in this case,

thus we define a proper prior on �j. We let �j follow a gamma distribution with parameters specified in

the analysis sections.

Our goals under this model are to obtain estimates of the regression coefficient b and determine the

amount of spatial autocorrelation within each of the four regions. To obtain the posterior densities, we

make use of Markov chain Monte Carlo (MCMC) techniques. In particular we use Gibbs sampling

(Gelfand and Smith, 1990) and the Metropolis–Hastings (M–H) algorithm (Chib and Greenberg,

1995). See Gelman et al. (1995), Gilks et al. (1996), and Robert and Casella (1999) for a full

description of MCMC techniques. For these algorithms, we require the full conditional distributions of

the parameters. If this distribution is of a known form, then they are easily sampled from directly via

the Gibbs sampler. If, however, they are not of a known form, we rely on the random walk M–H

algorithm. The full conditional distributions for this model can be found in the Appendix. All

programming and plotting was performed in R and is available from the first author upon request.

3. SOIL NITRATE-N (NO3--N) RESULTS

Hope et al. (2005) used a log transformation on NO3--N concentration data to ensure constant

variance. We do the same in this model. Their regression analysis for the entire study region found:

(1) latitude ( p ¼ 0:014); (2) an indicator variable for whether the site had ever been used in agriculture
( p ¼ 0:001); (3) the population density ( p ¼ 0:000); (4) the per cent of impervious surface

( p ¼ 0:009); and (5) per cent of lawn cover ( p ¼ 0:029) to be significant at the � ¼ 0:05 level using

a multiple regression model for soil nitrate. No spatial autocorrelation was found in the errors. We

chose our predictor variables to coincide with this analysis.

Similarly, a regression analysis was performed when modeling soil nitrate on only the urban sites.

Again, there was no spatial autocorrelation in the errors. A third regression model was used when

modeling soil nitrate on only the desert sites. Here spatial autocorrelation was found among the desert

sites to approximately 17 000m. Even though they found no spatial correlation between sites for the

entire study region, there was correlation when confined to a particular subarea. Thus, a model such as

that proposed in Section 2 is appropriate for this data set. We would like to find the significant

regression coefficients for the site as a whole, while allowing subareas to have differing spatial

relationships.

In our Bayesian analysis of this data, a Bayesian model selection technique should be instituted.

Bayes factor is one common model selection technique to capture the change in the odds in favor of

one model versus another. Kass and Wasserman (1995) state that the Bayes information criterion

(BIC) is a good approximation of �2 log Bayes factor. Using the same 12 initial predictor variables,

we estimated BIC for all possible subsets. The model with the five predictors mentioned above had one

of the four smallest BIC values with the BIC values being indistinguishable. We will thus proceed with

the same five predictor variables using the modeling in Section 2 and compare results from the two

approaches.

The Markov chain was run for 20 000 iterations at which point convergence was judged to have

occurred. This convergence happened within 1 000 cycles, we ran the ‘burn-in’ to 20 000 to be

conservative. This was repeated with five different starting values, and the results were impacted
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minutely. We then ran the chain for 20 000 more iterations. Estimates of parameters are based on all

20 000 converged samples.

Viewing the variogram of the residuals from Hope et al. (2005), we define proper priors to use for

the � parameters. We are not concerned with the estimates of these parameters, as b is the primary

concern. We use this parameter to account for the additional variability in the model. The starting

values for �urban, �agr, �mixed was 10 000. The prior distribution was Gamma (2.7778, 0.0005555),

which yields a mean of 5 000 and standard deviation of 3000. The starting value for �desert was 17 000
with a prior distribution of Gamma (32.1111, 0.0018889) which yields a mean of 17 000 and standard

deviation of 3000.

Since our primary interest is in the regression coefficients, we construct 95 per cent credible

intervals for the estimates b̂. The estimates and corresponding standard deviations of b are shown in

Table 1 along with the coefficients from the simple linear regression model. The 95 per cent credible

intervals for latitude and per cent lawn cover now include zero. This is likely due to including the extra

information by using the four different regions. Spatial relationships are now included in the model

and thus latitude would likely add very little above this. The desert has very little lawn cover,

agricultural sites would have a substantial amount of ‘lawn’ (i.e., grass or other sort green vegetation)

cover and the urban core would be mixed. Incorporating the heterogeneous variation, this additional

information again would add relatively little to the model. While the remaining variables ever used in

agriculture, population density, and percent impervious surface are still all significant, the values of

each of the coefficients has changed slightly. We note that latitude and lawn cover had the highest

p-values from the previous analysis.

Our model incorporates additional information by accounting for additional spatial variables. The

simple linear regression model does not account for spatial correlation in the errors and has a variance

of 2.26. We do not expect to see a spatial relationship among the urban sites. The posterior estimate of

the variance parameter (and standard deviations) from the urban sites is �̂urban ¼ 1:76 (0.69). We did

expect a relationship among the desert sites, which would likely lower the model error for the desert

sites. The posterior estimate is �̂desert ¼ 1:03 (0.23). The sample sizes for the remaining areas are quite

small and produce large estimates for the variance parameters at �̂agr ¼ 1:04 (0.56) and �̂mixed ¼ 2:02
(1.45).

We use four regions to account for differing levels of spatial variation and obtain posterior means

and standard deviations �̂2
urban ¼ 0:94 (0.66), �̂2

desert ¼ 0:48 (0.25), �̂2
agr ¼ 0:90 (0.58), and

�̂2
mixed ¼ 1:86 (1.57). We also obtained estimates of the posterior means and standard deviations

�̂urban ¼ 3731 (2624), �̂desert ¼ 17265 (3101), �̂agr ¼ 4616 (2801), and �̂mixed ¼ 6362 (3766). We see

here that there are clearly differences between the land use types. In particular, the range of spatial

relationship for NO3--N is much larger in the desert than in the other land use regions.

Table 1. Regression parameter estimates for NO3--N

Variable Regression estimates Model estimates 95% credible limits

Intercept 70.77 50.795 (26.119) (0.055, 102.374)
Latitude �2.06 �1.459 (0.777) (�2.998, 0.050)
Ever in ag 0.91 0.839 (0.321) (0.218, 1.412)
Population density 4.00 E(�4) 3.84 E(�4) (1.08 E(�5)) (1.71 E(�4), 5.94 E(�4))
% Impervious �0.011 �0.013 (0.005) (�0.023, �0.003)
Cover lawn �0.017 �0.016 (0.009) (�0.033, 0.001)
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4. TOTAL CARBON (C) RESULTS

Initial examinations at the empirical semi-variogram suggest slight spatial correlation when examin-

ing all the sites. There was no spatial auto-correlation when using only the urban sites. There was

spatial autocorrelation when viewing only the desert sites. Even though there was spatial autocorrela-

tion using all the sites, we will benefit by breaking this into four regions of differing spatial

correlations.

The frequentist approach used for soil nitrate-N was employed to incorporate one spatial

correlation error structure for the entire study region. This analysis found: (1) if the land was ever

used for agriculture ( p ¼ 0:000); (2) distance from the urban center ( p ¼ 0:000); (3) amount of

vegetation cover ( p ¼ 0:002); (4) per cent clay in the soil ( p ¼ 0:028); (5) if irrigation other than drip
or flood is used ( p ¼ 0:001) to be significant at the � ¼ 0:05 level. The estimate of the sill was 0.029,

the nugget effect¼ 0.004, and the range¼ 2765.

Using the same 12 initial predictor variables, we estimated BIC for all possible subsets. The model

with the five predictors mentioned above had one of the three smallest BIC values, all of which were

indistinguishable. We will thus proceed with these same predictors using the modeling in Section 2

and compare the results of the two approaches.

In our analysis, the Markov chain was run for 100 000 iterations at which point convergence was

judged to have occurred. This convergence happened within 30 000 cycles, we again ran the ‘burn-in’

to 70 000 to be conservative. This was repeated with five different starting values, and the results were

impacted minutely. We then ran the chain for 40 000 more iterations. Estimates of parameters are

based on all 40 000 converged samples. Convergence was much slower for C than it was for NO3--N.

This is likely due to relatively small �̂ values. In particular, the estimates of the standard deviation for

�̂agr and �̂mixed are larger than the means. Also, the standard deviation estimates for �̂urban and �̂desert are
large relative to their means.

The starting value for �urban was 1000 with a prior distribution of Gamma (0.25, 0.00025) which

yields a mean of 1000 and a standard deviation of 2000. The starting value for �desert was 3000 with a

prior distribution of Gamma (2.25, 0.00075) which yields a mean of 3000 and standard deviation of

2000. The starting values for �agr and �mixed was 1000. The prior distribution was Gamma (0.1111,

0.0001111), which yields a mean of 1000, and standard deviation of 3000.

The coefficients from the mixed model, estimates and corresponding standard deviations of b are

shown in Table 2. The 95 per cent credible intervals for the coefficients with distance from urban

center, vegetation cover, percent clay, and other irrigation all contain zero (2). By adding the additional

sources of spatial correlation, we have seemingly accounted for the effects of these variables. Distance

from urban center is a distance that should be accounted for in the spatial distances. Vegetation cover

Table 2. Regression parameter estimates for C

Variable Regression estimates Model estimates 95% credible limits

Intercept 0.875 0.852 (0.142) (0.573, 1.129)
Ever in ag 0.149 0.165 (0.074) (0.019, 0.310)
Distance from urban center �3.25 E(�6) �3.22 E(�6) (2.68 E(�6)) (�8.42 E(�06), 2.08 E(�06))
Vegetation cover 0.002 0.002 (0.002) (�0.001, 0.005)
% Clay 0.005 0.004 (0.005) (�0.005, 0.013)
Other irrigation 0.105 0.074 (0.087) (�0.096, 0.243)
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differs in each of the four specified regions. Allowing the variance to be different in each of the regions

diminishes its’ contribution. This is similar for the per cent clay variable. Additionally, there is no

irrigation in the desert and only one irrigation type (flood) is not used in agricultural regions. In other

words, the effect of these variables are due to marked differences between sub-regions themselves,

rather than due to continuous variation in those variables across the site as a whole.

The posterior estimate of the variance parameter (and standard deviations) from the urban sites is

�̂urban ¼ 0:066 (0.013). The posterior estimate is �̂desert ¼ 0:071 (0.016). The sample sizes for the

remaining areas are quite small and produce large estimates for the variance parameters at

�̂agr ¼ 0:160 (0.057) and �̂mixed ¼ 0:198 (0.081).

We use four regions to account for differing levels of spatial variation and obtain posterior means

and standard deviations �̂2
urban ¼ 0:095 (0.028), �̂2

desert ¼ 0:080 (0.020), �̂2
agr ¼ 0:165 (0.061), and

�̂2
mixed ¼ 0:199 (0.082).

We also obtained estimates of the posterior means and standard deviations �̂urban ¼ 16782 (9854),

�̂desert ¼ 6030 (3674), �̂agr ¼ 3189 (5292), and �̂mixed ¼ 1583 (2706). The relative imprecision is likely

due to the small sample sizes for a spatial statistical problem.

5. CONCLUSIONS

This modeling framework has allowed us to better account for the variability in the data. In particular,

NO3--N and total C have differing degrees of spatial relationships as well as differing variances in

the subregions. By accounting for this, we give a more accurate portrayal of factors influencing these

NO3--N and C. In this work, we find the variables that effect the soil content as a whole while we

maintain the importance of the individual subregions.

In addition, these analyses broadly confirm the results of previous results soil NO3--N concentra-

tions across the CAP region (Hope et al., 2005), as well as those for soil C. However, use of the

Bayesian approach detailed here allows a more detailed and accurate interpretation of the data in

several ways. First, the Bayesian models better fit/explain the variance in the data set, because they

better represent the subregional differences seen across CAP. Second, the Bayesian results indicate

where variables are important because they differ between land use types (i.e., defineable subregions)

rather than as a result of region-wide continuous variation in the data.

This survey is to be conducted again in 2005. There is still much that could be done when

examining the soil contents. Model selection is an important factor for this study. A Bayesian model

selection technique that works in the MCMC chain can be incorporated into a future analysis that takes

the spatial correlation structure into account. In addition, the current model assumes independent

processes for the individual land types. A new model could include multivariate relationships between

them.

Changes in these soil contents will be analyzed over time. The idea of the CAP-LTER study in

general is to see how these factors are changing over time and thus a (small) time component will

begin to be implemented.

APPENDIX: MCMC ALGORITHM

The full conditional distributions for our model are given below, ½�j�� denotes the full conditional

distribution of � given all other parameters. Let j ¼ 1; . . . ; 4.
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(i) ½b j�� � is distributed as N½ðX0��1XÞ�1X0��1ðY� ZÞ; ðX0��1XÞ�1�.
(ii) ½�j j�� � is distributed as Inverse Gammað�þ nj

2
; � þ 1

2
ðYj � Xjb� ZjÞ0ðYj � Xjb� ZjÞÞ:

(iii) ½Zj j�� � is distributed as N½ð1�j Iþ 1
�2
j

K�1
�j
Þ�1ð1�j ðY� XbÞÞ; ð1�j Iþ 1

�2
j

K�1
�j
Þ�1�. Z may be sampled

from directly. It will have a mean vector consisting of the means of the four Zj’s and a
covariance matrix that is block diagonal with the four blocks being of the covariance forms
above.

(iv) ½�2
j j�� � is distributed as Inverse Gammað�þ nj

2
; � þ 1

2
Z0
jK

�1
�j
ZjÞ.

(v) ½�j j�� is / ���1
j e���j jK�j j�1=2

expf� 1
2�2

j

Z0
jK

�1
�j
Zjg.
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