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Abstract

Background Wetlands store a substantial amount of
carbon (C) in deep soil organic matter deposits, and
play an important role in global fluxes of carbon
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dioxide and methane. Fine roots (i.e., ephemeral roots
that are active in water and nutrient uptake) are
recognized as important components of biogeochem-
ical cycles in nutrient-limited wetland ecosystems.
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However, quantification of fine-root dynamics in
wetlands has generally been limited to destructive
approaches, possibly because of methodological
difficulties associated with the unique environ-
mental, soil, and plant community characteristics
of these systems. Non-destructive minirhizotron
technology has rarely been used in wetland
ecosystems.

Scope Our goal was to develop a consensus on, and a
methodological framework for, the appropriate instal-
lation and use of minirhizotron technology in wetland
ecosystems. Here, we discuss a number of potential
solutions for the challenges associated with the
deployment of minirhizotron technology in wetlands,
including minirhizotron installation and anchorage,
capture and analysis of minirhizotron images, and
upscaling of minirhizotron data for analysis of
biogeochemical pools and parameterization of land
surface models.

Conclusions The appropriate use of minirhizotron
technology to examine relatively understudied fine-
root dynamics in wetlands will advance our knowledge
of ecosystem C and nutrient cycling in these globally
important ecosystems.

Keywords Fine roots - Minirhizotron - Wetlands -
Peatlands - Methodology

Introduction

Wetland ecosystems store more than one-quarter of
global terrestrial soil carbon (C) in deep soil
organic matter deposits (Batjes 1996; Bridgham et
al. 2006) and play an important role in fluxes of the
globally important greenhouse gasses, carbon diox-
ide and methane (Bridgham et al. 2006). Carbon
accumulation in wetlands is the result of an
imbalance between production and decomposition
that is caused by multiple interacting factors,
including anoxic and/or acidic soil conditions, cool
temperatures, and colonization by highly recalcitrant
plant species, including Sphagnum mosses (Gorham
1991). These factors generally limit plant-available
nutrients (Bridgham et al. 2001), and wetland
vascular plant colonization is restricted to a relatively
small number of species that are adapted to nutrient-
poor conditions (Bedford et al. 1999; Aerts and
Chapin 2000).
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The vascular plant species that colonize wetlands
can exert strong controls over ecosystem C and
nutrient cycling (Neff and Hooper 2002) through
adaptations that allow them to survive anoxic soil
conditions and efficiently use a limited pool of
nutrients (e.g., Vartapetian and Jackson 1997; Aerts
and Chapin 2000). For example, ephemeral distal fine
roots with a narrow diameter that are responsible for
plant nutrient and water uptake (Guo et al. 2008b),
play a major role in C and nutrient cycling in nutrient-
limited wetlands (e.g., Crow and Wieder 2005).
Living fine roots are a substantial component of net
primary production and plant nitrogen (N) require-
ment (Weltzin et al. 2000; Bond-Lamberty et al.
2006). Aerenchymous roots can penetrate anoxic
zones and aerate waterlogged soil (Colmer 2003),
and root turnover in deeper soil may stimulate the
decay of partially decomposed organic matter (Frolk-
ing et al. 2001), as well as contribute to organic
matter accumulation (e.g., Sullivan et al. 2007).

Despite the clear importance of fine roots, their
dynamics in wetlands have only rarely been exam-
ined. To date, our limited knowledge of root produc-
tion in wetland systems has largely been based upon
sequential soil coring (e.g., Reader and Stewart 1972;
Francez 1995) and root colonization of in-growth
cores (e.g., Finér and Laine 2000; Nadelhoffer et al.
2002). While these methods have emphasized the
relative importance of the root component in these
systems (e.g., Weltzin et al. 2000; Murphy and Moore
2010), they require multiple disturbances and are
unable to capture short-term patterns of birth, death,
and turnover of ephemeral roots (Vogt et al. 1998).

Minirhizotron technology may improve our under-
standing of ephemeral roots in wetlands. Minirhizo-
trons allow non-destructive, repeated monitoring of
fine roots over time through the permanent installa-
tion of clear tubes in the soil profile into which small
video cameras or scanners are inserted at regular
intervals (Hendrick and Pregitzer 1996). Minirhizo-
trons were initially envisioned as a cost-effective and
relatively less permanent alternative to large rhizotron
observatories used to observe in sifu root dynamics
(Bates 1937). The first minirhizotrons consisted of
lamp glasses buried in agricultural fields (Bates
1937), and minirhizotron technology has since been
used to quantify fine-root dynamics in a number of
upland ecosystems (as reviewed in Hendrick and
Pregitzer 1996; Johnson et al. 2001).
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Common misconceptions regarding the ineffective-
ness of minirhizotrons in wetlands have limited their
use, and by extension, have also limited our knowl-
edge of root processes in these systems. Only a
handful of studies have employed minirhizotron
technology in wetlands (Aerts et al. 1989; Steinke et
al. 1996; Steele et al. 1997, Baker et al. 2001,
O'Connell et al. 2003; Rodgers et al. 2003; Ruess et
al. 2003; Rodgers et al. 2004; Sullivan and Welker
2005; Kalyn and Van Rees 2006; Dickinson 2007;
Sullivan et al. 2007; Sullivan et al. 2008; Sloan 2010).
While these studies provide evidence that minirhizo-
tron technology can be used effectively to examine
fine-root dynamics in these systems, there remains a
need for review and standardization of approaches to
mange outstanding problems associated with unique
wetland characteristics.

Our objective was to develop and communicate a
methodological framework for the installation and use
of non-destructive minirhizotron technology to exam-
ine fine-root dynamics in wetlands. Many of the
issues and suggestions in this manuscript are unique
to wetlands, whereas others might be of special
concern in wetlands but are not unique to those
ecosystems. This topic is timely in that it coincides
with several new and on-going studies in the United
States, Canada, and Scandinavia that use minirhizo-
trons to examine root dynamics in wetlands (e.g.,
SPRUCE, Marcell Experimental Forest, Minnesota,
USA, http://mnspruce.ornl.gov; PEATcosm, Northern
Research Station, Houghton, MI, USA, http://nrs.fs.
fed.us/clean_air water/local-resources/downloads/
peatcosm_information.pdf; Mer Bleue Long Term
Fertilization Experiment, Ontario, Canada; and ABA-
CUS, Scandinavia, www.abacus-ipy.org).

Wetland characteristics that may affect
minirhizotron use

We focus our discussion here on minirhizotron use to
quantify relatively understudied root dynamics in
wetland ecosystems that have in common at least
two characteristics: poor drainage and an accumula-
tion of thick organic horizons. These systems encom-
pass peatlands, boreal forest, arctic tundra, marshes,
and swamps. Peatlands are wetlands characterized by
soil organic matter deposits at least 40 cm thick
(Bridgham et al. 2006). Peat-forming plant species

that colonize peatlands (i.e., Sphagnum mosses in
nutrient-poor bogs and poor fens, graminoid species
in rich fens with greater available nutrients, and
rainforest trees in tropical peat swamps) contribute
to a buildup of soil organic matter that averages
greater than 2 m depth globally (Gorham 1991).
Poorly-drained ecosystems in boreal forest and arctic
tundra also store a substantial amount of soil C in
thick organic horizons (i.e., 20 to 30 cm depth; Ruess
et al. 2003; Sullivan et al. 2007). Perennially flooded
wetlands that have developed on mineral soil, such as
marshes and swamps typified by emergent herbaceous
vegetation or woody vegetation, respectively (Mitsch
and Gosselink 1986), also sequester a significant
amount of organic matter in buried sediments
(Bridgham et al. 2006).

A variety of root adaptations of vascular species in
wetlands could affect vertical root distribution, as well
as root morphology and chemistry. For example,
black spruce (Picea mariana (Mill.) Britton, Sterns
& Poggenb.) and tamarack (Larix laricina (Du Roi)
K. Koch), which are dominant tree species in the
boreal forest and in forested bogs and poor fens, tend
to restrict their rooting zone to the shallow layer of
aerated peat above the water table (Lieffers and
Rothwell 1987; Burns and Honkala 1990) and
develop adventitious roots (Krause and Morin 2005;
E. Kane, pers. comm.). The fine roots of ericaceous
shrubs, which dominate the understory of nutrient-
limited peatlands, are also shallowly rooted (Murphy
and Moore 2010), but are distinguished from tree
roots by their smaller average diameter (Valenzuela-
Estrada et al. 2008). In contrast to woody species,
sedges, which are found in the waterlogged northern
tundra, across a variety of peatland ecosystems, and in
marshes, develop gas exchange root features called
aerenchyma that permit rapid transport of oxygen to
deep roots (Moog and Janiesch 1990). As a result,
sedges are often found deeper in the peat profile than
roots of woody plants (Moore et al. 2002; Sullivan et
al. 2007; Murphy et al. 2009a), which can allow
greater access to soil nutrients (Chapin et al. 1988;
Kohzu et al. 2003). Forbs, although relatively rare in
nutrient-poor wetlands, can also have aerenchymous
root systems (Rydin and Jeglum 2006).

Mycorrhizae play an important role in nutrient-
limited wetlands (e.g., Thormann 2006a; Thormann
2006b). Furthermore, potential differences in root
lifespan and morphology exist between mycorrhizal
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and non-mycorrhizal species (Muthukumar et al.
2004), and the association of different types of
mycorrhizae with unique root morphologies (Allen
et al. 2003) may assist in species-specific root
identification in minirhizotron images. For example,
all woody, non-ericaceous plant species examined
across a gradient of Canadian peatlands were
colonized by ectomycorrhizae, while all ericaceous
shrubs were found to host ericoid endomycorrhizae
(Thormann et al. 1999). In contrast, sedge coloni-
zation by arbuscular mycorrhizae may be low in
wetlands (e.g., Thormann et al. 1999) due to low soil
pH and high soil moisture (Miller et al. 1999). While
ericoid and arbuscular mycorrhizal fungi are not
readily visible on root tips at the scale of typical
minirhizotron images, ectomycorrhizae form sheaths
around root tips that are visible in minirhizotron
images (e.g., Fig. 1).

Recommendations on the use of minirhizotron
methodology in wetland ecosystems

Minirhizotron installation

Minirhizotrons are often installed in upland ecosys-
tems using an angled guide and soil core sampler (as
reviewed in Johnson et al. 2001). This system may
work well in wetland systems that are poorly-drained
but not perpetually flooded (e.g., Ruess et al. 1998;
Kalyn and Van Rees 2006; Sullivan et al. 2007).
However, alternative methods may be necessary in
wetlands where a shallow water table could lead to
the collapse of a pre-made hole, low density peat may
not support the weight of the guide, or both. For
example, in a series of northern peatlands, shallow
pilot holes were needed to core through dense root
mats in the upper 20 cm of peat, and minirhizotrons

Fig. 1 Minirhizotron image magnification may be an important
consideration for the experimental question of interest. /n situ
minirhizotron images were captured with the Automated Mini-
Rhizotron (AMR) camera (University of California, Riverside,
CA, USA). A digital microscope camera was attached to a
movable sled within a sealed minirhizotron tube, and linked via
a connecting cable to a computer with software to control sled
movement and to collect and transfer images to a server via the
internet. Images were collected from under the snowpack in
January, 2011 in a mixed conifer forest located at the James
Reserve University of California Nature Preserve (Riverside
County, California, USA; images from unpublished work by M.
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Allen). The forest was dominated by Pinus ponderosa C.
Lawson, P lambertiana Douglas, Calocedrus decurrens (Torr.)
Florin, Quercus chrysolepis Liebm., and Q. kelloggii Newberry.
RootView software was used to patch together the matrix of
individual images. Images A, B, and C are linear individual
AMR images showing a fine root with an ectomycorrhizal short
root; individual ectomycorrhizal hyphae from A1l can be seen in
larger A2 image. Arrow 1 indicates a fine root, arrow 2
indicates an ectomycorrhizal mantle, and arrow 3 indicates
rhizomorphs of the ectomycorrhiza. The scale bar is 100 pm in
length in images Al and A2. More AMR images can be viewed
at http://ccb.ucr.edu/amarssdata.html
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were then pushed or pounded (e.g., with a post-hole
driver) into deeper unconsolidated peat material (C.
Iversen, M. Murphy, V. Sloan, unpublished). In
situations where it is not possible to use a guide, care
should be taken to avoid creating too large a hole at
the peat surface, as gaps or light leaks could affect
estimates of shallow root dynamics (e.g., Hendrick
and Pregitzer 1996). Modification of the minirhizo-
tron tube body could further facilitate minirhizotron
installation. For example, a machined cone or point
fitted to the end of the minirhizotron (e.g., Dickinson
2007), could help prevent large increases in peat
density (and therefore pressure) at the bottom of the
minirhizotron. It may be useful to coordinate mini-
rhizotron installation with the installation of board-
walk to limit disturbance in sensitive wetland
environments and provide access for future minirhi-
zotron image collection.

The method of minirhizotron installation may
influence choice of minirhizotron tube material, given
that tensile strength varies among different materials
(Withington et al. 2003). The potential risks and
benefits associated with choosing a specific tube
material, which generally includes cellulose acetate
butyrate (CAB), acrylic, polycarbonate, and glass,
have been reviewed previously (Withington et al.
2003). While both CAB and acrylic minirhizotrons
have been successfully installed and used in northern
wetlands (e.g., Sullivan et al. 2007; Sloan 2010),
acrylic material may be superior to CAB due to the
potential effects of tube material on root lifespan
(Withington et al. 2003).

Flooding is a concern in ecosystems in which the
water table is very close to the soil surface, and we
have observed some level of flooding from the bottom
of our minirhizotrons (M. Murphy, V. Sloan, P
Sullivan, unpublished). Minirhizotrons should be
sealed at the bottom with adhesive and non-toxic
marine-grade silicone, and the relatively common
slow leaks in these systems may be successfully dealt
with before camera insertion using lint-free absorbent
cloths and/or a hand vacuum pump system. Frequent
cleaning with an absorbent cloth during the
imaging process may also help to manage conden-
sation on the inner surface of the minirhizotron
tube, which we have found to form quickly in
systems with high humidity and a relatively steep
temperature differential between the inside and the
outside of the tube. Rubber pipe grippers, rubber

stoppers, soil sleeves, or PVC end caps, combined
with aluminum or electrical tape, may be used as
covers to prevent water from coming in through
the upper end of the minirhizotrons.

The angle of minirhizotron installation has gener-
ally been approximately 45 degrees (as reviewed in
Johnson et al. 2001) in order to reduce artifacts
associated with vertical installation, such as preferen-
tial root growth or water flow along minirhizotrons
(Bragg et al. 1983; Johnson et al. 2001). Also,
vertically installed minirhizotrons may be unable to
capture vertically-growing roots, especially at depth
(Bragg et al. 1983). Without the help of an installation
guide, the angle of minirhizotron installation in
wetlands will likely not be exact (e.g., Ruess et al.
2003; Sloan 2010). A magnetic protractor can be used
to facilitate the correct angle of installation, and a few
degrees difference can be easily measured and
corrected for in subsequent analyses.

It is important to comprehensively sample wetland
microtopography with minirhizotron placement, as
microtopography is associated with gradients in soil
nutrient availability and plant tissue nutrient concen-
trations (Eppinga et al. 2010), plant community
composition (Baird et al. 2009) and root production
and rooting depth distributions (Dickinson 2007;
Sullivan et al. 2008; Murphy and Moore 2010).
Sufficiently large topographic features, including
hummock-hollow complexes (e.g., Johnson and
Damman 1991), strings (i.c., aggregates of hummocks)
and flarks (i.e., aggregates of hollows, Baird et al.
2009) and permafrost features in arctic wetlands
such as frost boils (Peterson and Krantz 2008), ice
wedge polygons (Minke et al. 2009), and thermo-
karst (Jorgenson et al. 2001), can be sampled using a
stratified random approach. Smaller topographic
features, such as tussock production by some sedge
species (e.g., Eriophorum vaginatum L., Chapin et
al. 1979), will likely be sufficiently captured with a
completely random sampling design. At a minimum,
we recommend making notes of the vegetation
composition above and adjacent to each minirhizotron
(e.g., Sullivan et al. 2008).

Minirhizotron tubes are the least expensive com-
ponent of minirhizotron technology (Hendrick and
Pregitzer 1996). It is relatively easy and cost-effective
to install several minirhizotrons in a given plot (i.e.,
more than called for in the initial experimental design)
as insurance against the extreme environmental
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conditions in wetlands, and the spatial heterogeneity
of root distributions (Jackson and Caldwell 1993).
The number of minirhizotrons needed to detect
differences in root-length density at a 95% confidence
level will depend on the variance among tubes. For
example, a minimum of eight minirhizotrons per plot
was needed to adequately capture root dynamics in
irrigated agricultural fields, but a much greater
number was needed in non-irrigated fields (Upchurch
1985; Taylor et al. 1990). Furthermore, additional
minirhizotrons may be needed to capture the dynam-
ics of relatively sparse root distributions at depth in
the soil (Upchurch 1985), which may be especially
important in wetlands where graminoid species are
present because their aerenchyma permit deeper root
penetration into waterlogged peat than woody species
(Murphy et al. 2009a; Sloan 2010).

Minirhizotron anchorage

The long-term stability of minirhizotrons is likely to
be a concern in wetland ecosystems due to fluctuating
water levels (Baker et al. 2001) and winter frost-heave
(O'Connell et al. 2003). Furthermore, minirhizotrons
may not be firmly stabilized in organic soils with a
low bulk density. These factors make it likely that
minirhizotrons installed in wetlands will require some
form of anchorage to prevent vertical or rotational
movement that could limit the long-term tracking of
individual roots.

Previous minirhizotron studies in wetlands have
used anchors consisting of wood (Sloan 2010), metal
conduit (Baker et al. 2001; O'Connell et al. 2003;
Rodgers et al. 2003; Rodgers et al. 2004), or steel
rebar (Dickinson 2007) installed to a depth between 1
and 3 m, and attached to the minirhizotron using hose
clamps, plastic cable ties, or duct tape. However, in
contrast to upland ecosystems, it may be important to
consider redox dynamics in these often highly acidic
and water-logged environments (i.e., Mitsch and
Gosselink 1986); a fiberglass or Teflon-coated stain-
less steel rod could be used in place of metal conduit
in order to avoid metal contamination of the
surrounding soil.

Some natural features of wetlands may help to
anchor minirhizotrons. In boreal and arctic ecosys-
tems, minirhizotrons have been successfully anchored
into the permafrost layer (Ruess et al. 1998; Ruess et
al. 2003; Sullivan et al. 2008). Indeed, installing
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minirhizotrons as deeply as possible in the soil profile
in most poorly-drained ecosystems may help to
stabilize them, even if imaging of deeper (perpetually
flooded) layers is not planned. A previous review
indicated several additional options for minirhizotron
anchorage in upland ecosystems (Johnson et al. 2001)
that would likely also work in wetlands, including
methods to improve minirhizotron contact with
surrounding soil and modification of the minirhizo-
tron tube body.

An indexing handle (Bartz Technology Corp.,
Carpinteria, CA, USA) is often used to facilitate the
imaging of the same soil location over time. However,
several studies in arctic tundra have forgone the
indexing handle and instead have used minirhizotrons
etched or marked with a continuous series of
rectangles smaller than the camera’s field of view
(Sullivan and Welker 2005; Sullivan et al. 2007,
Sullivan et al. 2008). An image of each rectangle was
collected by moving the camera without the aid of an
indexing handle, and only the area within the
rectangle was analyzed. There are two potential
advantages to this approach in wetlands: (1) it avoids
the process of attaching and removing the cuff
associated with the indexing handle, which could
result in displacement of a minirhizotron that is not
securely anchored, and (2) if a minirhizotron does
become displaced, the rectangular area to be analyzed
can be redrawn using image analysis software to
accommodate the displacement.

Minirhizotron cameras

Advancements in technology making it easier to
collect, store, and analyze large numbers of mini-
rhizotron images have been the most important driver
of minirhizotron use in a number of natural ecosys-
tems (Hendrick and Pregitzer 1996). Root observation
at the minirhizotron tube surface has progressed over
time (as reviewed in Upchurch 1985; Taylor et al.
1990) from a mirror and electric light bulb (Bates
1937), to a fiberoptic scope (Waddington 1971), a 35-
mm camera (Sanders and Brown 1978), a black and
white video camera (Dyer and Brown 1980), and a
battery-operated, color video camera (Upchurch and
Ritchie 1984). Currently, root dynamics are quantified
through the digital capture of color video images on
computer, or alternatively, with re-purposed digital
scanners. Applying recent advancements in optics to
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minirhizotron technology will further improve our
ability to answer important belowground questions
that have remained understudied to-date.

Camera systems that are currently available and
commonly used for tracking fine-root dynamics are:
the BTC-100% minirhizotron video microscope (Bartz
Technology Corporation, Carpinteria, CA, USA), the
CI-600 digital root imager (CID Bio-Science, Inc.,
Camas, WA, USA), and the newly-developed Auto-
mated Mini-Rhizotron system (AMR; University of
California, Riverside, CA, USA). Each camera system
has potential strengths and weaknesses with regard to
their use in wetlands. In particular, high camera
magnification and image resolution may be needed
to capture the production and mortality dynamics of
the ephemeral root population in peatland communi-
ties dominated by ericaceous shrubs with a narrow
root diameter (40 to 75 microns, Valenzuela-Estrada et
al. 2008). This will also be true of minirhizotron
experiments focused on the dynamics of small-
diameter mycorrhizal hyphae.

The BTC-100x video microscope captures analog
images of one 18-mm wide column of each mini-
rhizotron in depth increments of ~13.5 mm at a
magnification of 15x and image resolution of 470 TV
lines. While higher magnification is possible with the
BTC-100x (i.e., 100x) that would enable quantifica-
tion of small-diameter roots and hyphae, the magni-
fied image size is reduced to ~3 mmx=2.1 mm at a set
location within the camera’s field of view, which
could limit examination of root interactions and
branching, as well as roots at deeper soil depths
where they are relatively scarce.

The CID root imager scans ~345° of the inner
surface of a minirhizotron in ~20 cm depth incre-
ments; digital images are captured at a maximum
resolution of 1200 dpi. However, no magnification is
available. Furthermore, high-resolution scanning with
the CID system is prohibitively time-consuming and
may not be possible in remote wetland sites where
battery use is necessary.

The AMR system may facilitate the quantification
of small-diameter roots and hyphae in wetlands by
improving the size and magnification of minirhizotron
images. An automated digital microscope camera in
each minirhizotron tube collects individual high-
resolution images from a large portion of the mini-
rhizotron surface in increments of 1 mmx=1.2 mm at a
magnification of 100x (magnification up to 400x is

possible depending on the camera system used) up to
four times per day without disturbing the soil surface.
Additional benefits of the AMR system in wetlands
include a permanently sealed tube, which could help
to prevent flooding, as well as automated image
collection that could prevent minirhizotron shifting
from the disturbance associated with inserting a
camera at the surface. However, the purchase of
multiple camera systems will be costly, the automated
system requires wireless access, and AMR has not yet
been tested in wetland ecosystems. Also, wetlands
located in extreme climates such as cold boreal and
arctic biomes may benefit from a camera system with
fewer moving parts.

Frequency of minirhizotron image collection

The timing and frequency of image collection from
the minirhizotrons should depend on the question of
interest. Event sampling (i.e., intensive filming inter-
vals on the order of hours or days), can be useful for
determining root phenology or short-term root popu-
lation responses to environmental or biological
changes. For example, while water-table level often
drives important processes in wetlands (Funk et al.
1994), including average rooting depth distribution
(Murphy et al. 2009b; Murphy and Moore 2010), we
currently have a poor understanding of how quickly
roots respond to changes in water-table depth within a
growing season. While increased sampling frequency
leads to the additional collection of images that are
very time-consuming to analyze, Johnson et al. (2001)
show that the analysis of every other minirhizotron
frame will likely not significantly alter experimental
conclusions provided the number of minirhizotrons is
sufficient.

In contrast with event-based sampling which may
occur only a few times a year, determining annual
root production and mortality requires repeated
sampling over annual timeframes (Johnson et al.
2001). Timing of image capture in wetlands has
ranged from intervals of 1-2 weeks (Sullivan and
Welker 2005; Sullivan et al. 2008) to 1 month or more
(Aerts et al. 1989; Steinke et al. 1996; Steele et al.
1997; Baker et al. 2001; O'Connell et al. 2003;
Rodgers et al. 2003; Rodgers et al. 2004; Sullivan et
al. 2007). However, 3 days to 1 week have been
previously recommended as the longest sampling
intervals to avoid underestimating root production
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and mortality in upland ecosystems (Stewart and
Frank 2008; Kitajima et al. 2010), and there is little
evidence to indicate that environmental conditions in
wetlands result in substantially slower root turnover
when compared with uplands (e.g., Gill and Jackson
2000). Roots may be active during winter months
(e.g., Anderson et al. 2003), making it necessary to
capture root dynamics outside of the growing season
in order to accurately represent total annual root
production and mortality. Root overwintering may be
especially important in wetland systems where a
shallow water table, low bulk density, and snow
insulation may limit the depth of winter freeze.
However, root observation during winter months will
depend on site accessibility and whether the mini-
rhizotron camera can be safely inserted into and
removed from the minirhizotron (e.g. frozen soil may
compress the minirhizotron tube and hinder camera
insertion). All three camera systems discussed here
function to at least 0°C (P Sullivan, V. Sloan, M.
Allen, unpublished).

Recommended filming intervals assume that root
production and mortality at the minirhizotron surface
is in equilibrium with the surrounding soil. However,
the length of time it will take for the root population
to colonize the minirhizotrons and develop an age
structure similar to that in the undisturbed soil is
uncertain. While a waiting period of 6 months to
1 year has been recommended for the minirhizotrons
to reach quasi-equilibrium (Hendrick and Pregitzer
1996; Johnson et al. 2001), it could take as long as
4 years for root population turnover to stabilize (e.g.,
Iversen et al. 2008). Unfortunately, to our knowledge
there are no long-term minirhizotron data sets from
wetlands for comparison (most studies have been
conducted for 3 years or less).

Minirhizotron image analysis

There are a number of software packages available for
the analysis of minirhizotron images obtained from
video or scanning equipment, including RooTracker
(Duke University National Phytotron, Durham, NC,
USA), WinRHIZO Tron (Regent Instruments, Inc.,
Quebec, Canada), and Rootfly (Birchfield and Wells,
Clemson University, Clemson, SC, USA). More
conventional GIS software such as Maplnfo (Pitney
Bowes Mapinfo Corporation, New York, NY, USA)
may also be adapted for root image analysis (e.g.,

@ Springer

Bai et al. 2010; Sloan 2010). Each software package
has strengths and weaknesses with regard to the
analysis of fine roots in wetland ecosystems. Some
systems allow realignment of the image analysis
frame (e.g., RooTracker and GIS software) which is
useful in tracking roots in wetlands where mini-
rhizotron movement or peat subsidence may be
common. Other software allows the tracking of
multiple diameters per root (WinRHIZO Tron), or
automated root detection (Rootfly), although the
latter may miss small-diameter and older pigmented
roots in peatlands (M. Murphy, unpublished).

One of the benefits of minirhizotron technology
when compared with soil coring is the ability to track
the growth and mortality of individual roots. However,
fluctuating water tables, frost-heave, peat shifting, or
peat subsidence could lead to the disappearance of
roots from a given minirhizotron image frame as a
result of processes other than mortality or decay (e.g.,
Fig. 2), while condensation, ice, or water may obscure
images (O'Connell et al. 2003). Image analysis may
also be hindered by the fibrous nature of peat formed
from decaying Sphagnum moss or graminoid material,
which does not provide an ideal contrast to
differentiate older, pigmented roots (e.g., Fig. 3).
Minirhizotron anchorage, combined with the instal-
lation of “extra” minirhizotrons may help to alleviate
some of these problems, but other problems will
require careful consideration of data quality and use
(e.g., O'Connell et al. 2003).

Slow root decomposition rates in wetlands due to
acidic, water-logged conditions (i.e., Moore et al.
2007) may further complicate the already challenging
task of root lifespan analysis. Root mortality may be
difficult or impossible to determine because dead
roots may remain structurally intact in wetlands for
longer periods of time than in uplands. Some
researchers have addressed this issue by assigning a
tentative mortality designation based on visual char-
acteristics; when combined with continued re-analysis
of individual roots, this approach can assist in more
accurate mortality estimates (e.g., Rodgers et al.
2003). Though ultraviolet light has been suggested
previously as way to differentiate live and dead roots
on minirhizotron images (Wang et al. 1995), this
technology has not proven reliable (Wang et al. 1995;
Baker et al. 2001; Rodgers et al. 2003).

Given potential difficulties associated with tracking
the fate of individual roots and determining root
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Fig. 2 Seasonal shifting was observed in the surface layer of a
Pinus sylvestris L. forest peatland in southern Finland that was
drained in 1970. Minirhizotron images were collected with the
BTC-100x minirhizotron video microscope (Bartz Technology
Corporation, Carpinteria, CA, USA), and were pieced together
in vertical columns representing the peat profile on each of ten
sampling dates from May, 2009 to June, 2010 (images from

mortality in wetlands, root population turnover may
be calculated instead as total annual fine-root produc-
tion or mortality divided by peak fine-root standing
crop (Gill and Jackson 2000). However, this method
must be used with caution, as it assumes that the root
population has fully colonized the minirhizotrons,
which could take years (Iversen et al. 2008) and also
assumes that root production and mortality are in
equilibrium. Furthermore, living root biomass at peak
standing crop may be a relatively small percentage of
total root biomass (living and dead) in wetlands (i.e.,
less than 20%, Bernard and Fiala 1986) due to slow
root decomposition rates. Unfortunately, no easy
correction factor exists, as current methodologies
to differentiate living and dead roots in soil cores
can be somewhat subjective (e.g., root coloration

31Aug. 60ct.

unpublished work by T. Sarjala). Images are shown here to a
depth of ~11 cm. As indicated by the appearance of the same
roots in different minirhizotron images over time, peat initially
shifted downward between image collection dates in October,
2009 and May, 2010 (i.e., over winter). Peat continued to
subside throughout the summer of 2010, but began to shift
upward on the last two sampling dates of 2010 (see arrows)

and tensile strength, Aerts et al. 1989) or inconclu-
sive (e.g., staining to determine metabolic activity,
Sturite et al. 2005).

Differences among functional groups in their rooting
dynamics and chemistry may also necessitate additional
analytical considerations. Whenever possible, roots
should be differentiated to at least a functional life-
form designation (i.e., tree, shrub, sedge); this may be
aided by unique morphological features, such as
diameter distribution, coloring (e.g., relatively pale
sedge roots compared with pigmented woody roots),
growth habit (e.g., highly-branched ericaceous roots
compared with sparsely-branched and vertically-rooted
sedges), or mycorrhizal colonization.

Given the known differences in the amount of root
geotropism among species and root types, it is
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important to consider species-specific interaction with side, and bottom surface of minirhizotrons (Fig. 4).
the minirhizotron surface (e.g., Sorrell et al. 2000). The vertical growth habit of sedge Eriophorum
Three plant communities in northern Finland (Sloan angustifolium Honck. resulted in up to ~50% of total
2010) were found to differentially colonize the upper, annual root length being produced along the upper-
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<« Fig. 3 Minirhizotron images indicate some common peat and
fine-root characteristics of bogs. Images were captured from
two different bogs in October, 2010 using the BTC-100x
minirhizotron video microscope system (Bartz Technology
Corporation, Carpinteria, CA, USA). The peatlands are: (a) a
black spruce bog at Marcell Experimental Forest, northern
Minnesota, USA (SPRUCE, http://mnspruce.ornl.gov/; images
from unpublished work by C. Iversen and J. Childs), and (b) an
open bog at Mer Bleue Conservation Area in Ontario, Canada
(Mer Bleue Long Term Fertilization Experiment; images from
unpublished work by M. Murphy). Images shown are from one
minirhizotron located in a hummock at each site; the depth
range from which each image was captured is located at the
left. Scale bar is 2 mm in length; arrows in each image indicate
a fine root (most images contain multiple fine roots). While
new (i.e., white) fine roots show up well against the peat matrix
consisting mainly of decomposing Sphagnum mosses, older,
more pigmented roots are difficult to observe (e.g., 5-10 cm
depth in column A, and 25-30 cm depth in columns A and B).
Furthermore, loosely consolidated peat may create large gaps or
pockets that may make it difficult to determine a depth of field,
and also to decide which roots should be included in the
analysis of a given image (e.g., 10-25 cm depths in column A,
0 to 20 cm depths in column B). Some images are obviously
underwater (e.g., 25-30 cm depth in column A, and 20-30 cm
depth in column B); a qualitative analysis of image water
content could potentially be used as a covariate in root
analyses. See also Dickenson (2007) for images of roots in a
flooded, freshwater swamp in southeastern Virginia, USA

facing quadrant of the minirhizotron surface for at
least three years after minirhizotron installation
(Fig. 4a). This underscores the need for angled
minirhizotron installation to capture root dynamics
in systems dominated by vertically-rooted sedges.
However, these data also indicate that care must be
taken in the interpretation and upscaling of root data
from minirhizotron images in systems colonized by
vertically-rooted species, as data extrapolated from
the upper minirhizotron surface could greatly overes-
timate the density of geotropic roots. In contrast, the
non-differential surface colonization of minirhizotrons
in systems dominated by woody species (Fig. 4c) might
enable the analysis of minirhizotron surfaces other than
the top surface in these systems to avoid the potential
effects of gaps, light leaks, and soil drying on the
quantification of root dynamics at the peat surface
(e.g., Johnson et al. 2001).

Scaling root length and diameter to biogeochemical
pools

Scaling minirhizotron data from idiosyncratic units
(i.e., root length per frame or per minirhizotron

surface area) to units comparable to aboveground
production is necessary to determine the contribu-
tion of the fine-root population to ecosystem
processes (Johnson et al. 2001). Scaling involves
two steps: (1) scaling from minirhizotron surface
area to soil volume, and (2) scaling from root length
and width to root mass. A depth-of-field approach,
where it is assumed that the roots observed in the
minirhizotron frame fill some volume of soil, has
often been used to upscale minirhizotron data from
root length per minirhizotron surface area to root
length per soil volume. A 3-mm depth of field was
initially used to scale root length (Sanders and
Brown 1978), but in practice, the assumed depth of
field has ranged from 2 mm to 3 mm in upland
systems (Johnson et al. 2001) and in wetlands. For
example, a 3 mm value was chosen in sedge-
dominated arctic tundra (Sullivan and Welker 2005;
Sullivan et al. 2007; Sloan 2010) based on compar-
ison of minirhizotron data with values in the
literature (Sullivan and Welker 2005) and estimates
of annual production made using in-growth cores
(Sullivan et al. 2008), whereas a 2-mm depth of field
was used in poorly-drained boreal black spruce
forests (Steele et al. 1997; Ruess et al. 2003).
Loosely consolidated peat in wetland ecosystems
may make it difficult to estimate an average field
depth, especially at shallow soil depths in where
bulk density is least (Rodgers et al. 2004; Fig. 3, this
paper). As the assumed depth of field can drastically
affect root production estimates (e.g., Metcalfe et al.
2007), objective methods for defining depth of field
(e.g. from automated analysis of image edge resolu-
tion), and for selecting roots to include in a given
analysis (e.g., derived from root-edge sharpness),
seem both possible and desirable.

While the depth-of-field approach allows an
estimate of root length per unit soil volume, root
length must be converted to biomass units in order to
inform ecosystem C and nutrient budgets. Diameter is
a useful metric for scaling minirhizotron data to root
biomass and nutrient content, as root width is
relatively easily observed in high-resolution minirhi-
zotron images. Most studies use the specific root
length (SRL) of one or more diameter classes of root
determined from soil cores to scale to root biomass
from minirhizotron data (Johnson et al. 2001).
However, the application of a single value of SRL to
a broad diameter class (e.g., 0 to 1 mm as in Johnson
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Fig. 4 Percent distribution of total annual root length produc-
tion around the minirhizotron surface determined from ~360°
scans (CI-600 digital root imager, CID Bio-Science, Inc.,
Camas, WA, USA) taken in three plant communities in northern
Finland in 2008 (Sloan 2010). A cross-section of a minirhizo-
tron tube is provided in panel ¢ to indicate how the
minirhizotron surface was divided for this analysis; each
section represented one quarter of the tube. Data are mean+1
SE (n=8 minirhizotrons in each plant community). Within each
plant community, a one-way ANOVA followed by Tukey’s HSD
test were used to determine differences in annual root length
production among each quarter of the minirhizotron tube
surface. The three communities examined were dominated
(>10% cover) by different species and comprised: (a) a sedge
community in standing water, dominated by Eriophorum
angustifolium Honck. and Carex chordorrhiza Ehrh. ex L. f,
(b) a forest margin dwarf shrub community on well-drained
organic soil, dominated by Empetrum nigrum L., Vaccinium

et al. 2001) can substantially overestimate the weight
of smaller-diameter roots. Continuous relationships
between root diameter, and root biomass, N concen-
tration, or respiration exist for a number of species
(Iversen et al. 2008; Makita et al. 2009), including
those in wetlands (Sullivan et al. 2007).

Given the difficulties in determining a depth of
field from minirhizotron images taken in wetlands,
and the fact that minirhizotrons may not intercept
roots in the soil in a way that represents the average
rooting distribution, an alternative approach may be
needed to determine root biomass production or
mortality. One alternative may be to use soil cores to
determine root standing biomass, which is then scaled
to production or mortality using length-based annual
root turnover rates (or root lifespan estimates) derived
from minirhizotron images (Hendrick and Pregitzer
1996). As different root diameter classes, as well as

@ Springer

uliginosum L., and Calluna vulgaris (L.) Hull, and (c) a forest
community on well-drained organic soil, dominated by Betula
pubescens ssp. tortuosa (Ledeb.) Nyman, Betula nana L., E.
nigrum, and Vaccinium vitis-idaea L. Within each community,
different letters indicate significant differences in annual root
length production among quadrants of the minirhizotron surface
(P<0.05), while shared letters indicate no significant difference
(e.g., side “A” and the “Upper” surface in panel b). Differences
in minirhizotron surface colonization were likely because of a
difference in rooting habit of the dominant species in each
community. Sedges were vertically-rooted, while some shrubs
in the forest edge community rooted from shallow rhizomes,
and B. pubescens ssp. tortuosa in the forest community was
horizontally-rooted. Across all three sites, it appears that
minirhizotron sides may be the most representative of total
tube colonization (~25% total annual root length production at
each site)

different species, will likely have different turnover
rates, the scaling can be done separately for each root
type to obtain an average ecosystem-level estimate of
root biomass production or mortality. However, this
method may also be challenging in wetlands, given
issues with (1) estimating root turnover from mini-
rhizotron images, and (2) obtaining accurate estimates
of the biomass of small-diameter ericaceous roots
from soil cores (e.g., Murphy et al. 2009b).
Up-scaled estimates of root biomass production
from minirhizotron data have been assessed in wet-
lands using in-growth cores installed at an angle to
mimic the minirhizotrons and to better capture the
dynamics of vertically growing root populations (e.g.,
Sullivan et al. 2007; Sullivan et al. 2008; Sloan 2010).
One benefit of using in-growth cores in wetlands is
that it may be easier to separate out small-diameter
ericaceous shrub roots from milled peat rather than
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from an intact peat matrix (i.e., Murphy and Moore
2010), though very fine roots may still be lost (Finér
and Laine 2000). However, in-growth cores have a
number of problems (Vogt et al. 1998), which include
long sampling intervals that could miss a substantial
fraction of root production and mortality, as well as a
higher proportion of pioneer roots that are destined
to be structural rather than nutrient-absorbing
(Zadworny and Eissenstat 2011). Additionally,
while root production estimates from in-growth
cores have been found comparable with minirhizo-
tron production estimates in some wetlands (Sullivan
et al. 2008), in other wetlands, in-growth cores were
poorly colonized by roots (Sloan 2010).

It is well known that the ontological order of root
production (i.e., root order) is an important driver of
root physiology, nutrient content, turnover, and my-
corrhizal colonization (Pregitzer et al. 2002; Guo et
al. 2008b; Valenzuela-Estrada et al. 2008). However,
root order is less easily observed than root diameter in
smaller minirhizotron images, so camera systems with
larger frames of analysis may be necessary for root
order analyses. Alternatively, intensive surveys of root
anatomy conducted on intact root systems may help
to determine the diameter range of ephemeral roots
before the minirhizotron study is undertaken (e.g.,
Pregitzer et al. 2002; Guo et al. 2008b; Valenzuela-
Estrada et al. 2008). In woody plants, ephemeral roots
(i.e., roots with a primary function of resource uptake)
are those roots that are non-woody and have an intact
cortex (Guo et al. 2008b). The number of lateral root
branches (i.e., orders) that comprise ephemeral roots,
as well as the diameter of different root orders, may
differ among species (e.g. Pregitzer et al. 2002; Guo
et al. 2008b). After relationships between root
morphology and physiology have been determined,
a species-specific average diameter may be used to
determine root order from minirhizotron images
(Valenzuela-Estrada et al. 2008). In so far as ephem-
eral roots can be clearly separated from longer-lived,
woody roots based on root diameter (which may not
be possible in all instances, e.g., Guo et al. 2008b),
the order-diameter relationship will allow subsequent
minirhizotron analyses to focus on ephemeral root
dynamics.

The minirhizotron technique is most useful for
understanding the contribution of ephemeral roots
(i.e., the lowest root orders) to ecosystem C and
nutrient budgets because small observation win-

dows may not capture the dynamics of higher-
order roots. Also, woody roots with a slower
growth rate may take longer to colonize the
minirhizotron tubes (e.g., Pritchard and Strand
2008). Therefore, estimates of root C and nutrient
content extrapolated from minirhizotron data should
not be considered representative of all roots in the
system. Other methodology, including stable C
isotopes, may be useful in this regard (e.g., Guo et
al. 2008a; Strand et al. 2008).

Root dynamics should be reported both in terms of
absolute depth in the soil, as well as distance to the
water table (e.g., Moore et al. 2002). This may be
particularly important in the context of understanding
the interaction between root dynamics and peat
microtopography, as hummocks and hollows are by
definition different heights above the water table.

Informing ecosystem and land surface models
with fine-root dynamics

Dynamics of fine roots are not currently well-
represented in most ecosystem and land surface
models (Jackson et al. 2000; Iversen 2010). The
unique features of wetlands may further complicate
data-model linkages, especially given the poor repre-
sentation of wetland ecosystems in existing models
(Limpens et al. 2008). Challenges in confronting
models with fine-root data are related to: (1) predict-
ing continuous root growth and turnover dynamics
across ecosystems, (2) understanding how root phys-
iological processes change with rooting depth, (3)
understanding root physiological activity outside of
the growing season, and (4) correctly representing
fractional root allocation and rooting depth distribu-
tions across plant functional types. In particular, the
depth at which fine roots are produced has important
implications for ecosystem C storage in wetlands
(Frolking et al. 2001).

While lingering questions remain regarding fine-
root dynamics in relatively understudied wetland
ecosystems, recent research has uncovered some
important predictive relationships between rooting
dynamics and relatively easily measured environmen-
tal or plant community variables in these systems. For
example, Murphy and Moore (2010) found that
rooting depth distribution in an ombrotrophic bog in
Canada was well-predicted by both average growing
season water table depth and aboveground biomass.
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Future research should focus on overcoming the
difficulty of identifying roots of different species in
minirhizotron images to allow the determination of
species-specific rooting dynamics and depth distribu-
tion. An additional focus should be the examination
of root physiology (i.e., root lifespan, nutrient uptake)
outside of the growing season.

Conclusions

Minirhizotron technology, despite its imperfections,
remains one of the best methods to address questions
regarding the dynamics of ephemeral roots in natural
ecosystems. However, the deployment of minirhizo-
tron technology in wetlands may be challenged by
unique environmental, soil, and plant community
characteristics. We have discussed here a number of
recommendations for minirhizotron deployment in
wetlands with regard to installation and image
analysis, and the upscaling of minirhizotron data to
inform biogeochemical pools and land surface mod-
els. Advancing the use of minirhizotron technology to
examine relatively understudied fine-root dynamics in
wetlands is important for expanding our knowledge of
ecosystem C and nutrient cycling in these systems.
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