

O utline

- Mating Design
- M aximize representation of all lines
- Seed Orchard Design
- Test parents (as known)
- M aximize crossing of unrelated lines
- Genotype x Environmental Interactions

Purpose of a Seed Orchard

- Progeny Testing
- Determine parental quality
- Genetic gain
- Trait improvement
- Seed Production
- Capture diversity $\sqrt{1010}$
- Purpose will drive mating design

M ating Designs

- Incomplete Pedigree
- Open-pollinated mating
- Polycross (pollen mix)
- Complete Pedigree Deigns
- Nested, Factorial, Single-Pair, Full Diallel, Half Diallel, Partial Diallel

Incomplete Pedigree

- Pollen parent is unknown
- Open-pollinated mating
- Polycross (pollen mix)
- Almost controlled, but apply a mix of pollens to each flower/tree.
- Useful if not all trees in one location.

Complete Pedigree

- Single Pair Mating
- Provide good information for fullsib family performance
- Provide estimates of some genetic parameters
- Maximum unrelatedness but not optimum for selection
- Low cost
1×2
3×4
5×6
7×8
... X ...

Complete Pedigree

- Nested Mating
- Provide information for parents and full-sib families
- Provide estimates of both additive and dominance effects
- Not efficient for selection
- Low cost for controlled mating

Complete Pedigree

- Factorial Mating

- Provide good information for parents and full-sib families
- Provide estimates of both additive and dominance effects
- Limited selection intensity
- High cost

Complete Pedigree

- Full Diallel

- Half Diallel
- Provide good evaluation of parents and full-sib families

- Provide estimates of both additive and dominance effects
- High cost

\bigcirc	${ }^{1}$				
	1	2	3	4	5
	X	x	x	X	x
		X	x	X	x
			X	X	x
				X	X
					X

O pen Pollination vs. Controlled Pollination

- To capture 95\% of allelic diversity:

$$
\left(2^{n}-2\right)^{a} /\left(2^{n}\right)^{a}
$$

which reduces to $\left(1-2^{1-n}\right)^{\text {a }}$

9 progeny from each straight BC3
VS
10 progeny from each cross of two straight BC3s (?)

Open PollinationCapturing Allelic Diversity

Number of selected Progeny	Percentage Captured (\%)	How much to add? (\%)
1	50.00	50.00
2	62.50	37.50
3	71.88	28.13
4	78.91	21.09
5	84.18	15.82
6	88.13	11.87
7	91.10	8.90
8	93.33	6.67
9	94.99	5.01

O pen Pollination vs. Controlled Pollination

- To capture 95\% of allelic diversity:

$$
\left(2^{n}-2\right)^{a} /\left(2^{n}\right)^{a}
$$

which reduces to $\left(1-2^{1-n}\right)^{\text {a }}$

9 progeny from each straight BC3
VS
10 progeny from each cross of two straight BC3s (?)

Controlled Pollination Capturing Allelic Diversity

			Number of selected Progeny	Percentage Captured (\%)	How much to add? (\%)
1	x	2	1	50.00	50.00
1	x	2	2	75.00	25.00
1	x	2	3	87.50	12.50
1	x	2	4	9.75	5.25
1	x	2	5	96.88	5.13

- 64 possible combinations
 RrRrRr x RrRrRr
 - 1 with all
 Dominant alleles

	RRR							
RRR	RR	RRRRRR						
RRr	RRRRrR							
rRR	rRRRRR							
RrR	RRrRRR							
Rrr	RRrRrR	RRrRrr	RrrRrR	RRrrrR	RRrrrr	Rrrrr	RrrRrr	Rrrrr
rrR	rRrRRR	rRrRRr	rrrRRR	rRrrRR	rRerrri	rrrrR	rrrRRr	rrrrRr
rRr	rRRRRR	rrRerr						
rrr	rRrRrR	rRrRrr	rrrRrR	rRerrR	rRrrrr	rrrrr	rrrRrr	rrr

How M any Trees to Plant

- $P=0.99=1-\sum_{m=0}^{3} 74\left(0.125^{m}\right)(08.75)^{74-m}$
- OPEN POLLINATION
- 64 trees * 2 chances $=128$ trees
- 85% survival $=$ plant 150 seed
- 150 trees * 20 lines $=3000$ seed
- 3000 trees / block
-3000×9 replicates $=27,000$

How M any Trees to Plant

- CONTROLLED POLLINATION
- 64 trees * 2 chances $=128$ trees
- 85\% survival = plant 150 seed
- 150 trees * 10 lines $=1500$ seed
- 1500 trees / block
- 1500×10 replicates $=15000$

Plots

The Plot: the smallest unit
One hundred and fifty $B_{3}-F_{2}$ nuts, all progeny of the same B_{3} tree, are planted in one plot in five rows of thirty nuts each. The rows are seven feet apart and the nuts are one foot apart within each row. A four to five foot border is maintained around the seedlings.

150 seed from same genetic line per plot 11 - 20 plots (lines) within a block

Blocks

- There are 20 plots within a block.
- Each plot represents a different genetic line, defined by it's BC3 heritage.
- There are nine replications of these plots.

Selection within Plots

Selection occurs in each plot
At two years of age the seedlings are inoculat ed with the blight fungus. The trees are rogued over period of years, with the most blight-suscept ible rogued first. Only one seedling, the most blight resistant, is ultimat ely chosen to remain as part of the seed orchard.

Inoculation occurs when trees within a plot average 1 cm in stem diameter at 1 foot above the ground.

This may be within the $2^{\text {nd }}$ or $3^{\text {rd }}$ growing season

- Maybe even $3^{\text {rd }}$ or $4^{\text {th }}$
- Now going toward a staggered inoculation design

Skew ed Distribution

What if We Don't Get Good Resistance?

- Recurrent Selection?
-What's the effect?
- Inbreeding concerns?

- Limited Reintroduction Does Not Always Lead
 to Rapid Loss of Genetic Diversity: An Example from the American Chestnut (Castanea dentata; Fagaceae)

Open Pollination

- Very straightforward
- Start with 20 lines
- Each has an (assumed) equal opportunity to be pollinated by each of another parent.
- Replicate 9 times and have a possible 9
combinations of parents

Controlled Pollination?

- Lines
- Staggered coming out
- Some can open-pollinate, some can't
- Cross each line to each other?
- Or just cross one line to one or a couple of other lines?
T. Combination of Open and Controlled?
- Pollen Mix?

Brogue: Ort x CL287

Environmental

Effects?

- Ober
- Same lines replicated elsewhere
- Worst performing
- Huge initial lesions
- Large final canker size

Space and Time

- Openpollination vs. controlled
- Combination?!

Farm	Year Inoculated	Number of Lines
Beech Creek	2007	3
Brogue	2000	2
Brogue	2001	4
Brogue	2006	3
Codorus	2006	2
Dornsife	2000	1
Dornsife	2001	2
Hummelstown	2004	2^{*}
Kuhns	2006	$7^{* *}$
Kuhns	2008	$7^{* *}$
Ober	2004	4
Ober	2008	3
Red Clay	2004	3
Red Clay	2007	9
Reels Corner	2002	1
Riegelsville	2005	2
Thorpewood	2006	3

Please.

- Only use one, maybe two trees as a representative for any given line.
- Use THE BEST TREES!
- That DOES NOT mean to destroy them.
- Save just in case.

LINE	Female	Male	Planted
CL287 x GR210	br96-012	br97-123	150
	br96-026	br97-199	6
	br96-066	br97-105	28
	br96-066	br97-184	122
	br96-106	br97-109	53
	br96-106	br97-199	92
	br96-115	br97-199	184
	br97-001	br96A-016	53
	br97-090	br96A-016	29
	br97-105	br96-012	28
	br97-109	br96-115	4
	br97-109	br96-087	23
	br97-109	br96-026	100
	br97-111	br96A-016	15
	br97-123	br96-106	1
	br97-184	br96-106	15
	br97-199	br96-106	20
	br97-199	br96-115	31
	br97-199	br96-066	190
	do96-030	do97-130	9
	do97-053	br96-106	37
	do97-053	br96-012	3
	do97-130	do96-030	20
	do97-171	do97-130	3
	rc97-031	br96-087	80
	rc97-075	br96-066	74
	rc97-076	br96-106	27
	rc97-107	br96-066	4
TOTAL			1401
zW"			

Controlled Pollination?

- Lines
- Staggered coming out
- Some can open-pollinate, some can't
- Cross each line to each other?
- Or just cross one line to one or a couple of other lines?
Combination of Open and Controlled?
Pollen Mix?

Crossing Schemes

- Purpose?
- Capture allelic diversity
- Capture all of which is contained within a certain line
- Which is represented by a single $B C 3$ tree
- So all you _really_ need, probably, is just one cross replicated 9 times
- But...

Open Pollination

- Capture each by having 9 representatives
- Potential of having 9 different crosses
- But maybe only one combination of mother and pollen parent occurs
- Not likely
- But won't know

Controlled Pollination

- Parents are known.
- How many crosses?
- M inimum of 1 cross replicated 9 (or 10?) times.
- Ultimate possibility would be Half-diallel

Depends on Timing, Location, and Resources Available

- Look at Handouts

Imm	Yeur inoculsted	Nambes eflines
Beech Craei	2009	
Arofue	2000	
Protue	2009	
Brgsue	2006	
Cedorus	2006.	
Oernsite	2000	
Opmute	2003	
Hivernehtown	2004	$2{ }^{\circ}$
Cuthis	2006	7 $7^{2 *}$
xuhni	3000	Tm
Ober	2004	
Ober	2006	
foed Clay	2004	
Led Clyy.	2007	
Eeels Comer	2002	
tiegelinulle	2005	
Thocpewood	2006 -	

PSU Arboretum - 2002

PSU Arboretum - 2004; winter

PSU Arboretum - 2006; summer

Delegate Responsibility

- Split the blocks up as necessary
- Recommend
- At least one larger orchard
- 4-5 blocks
- Single cooperator
- One with an established infrastructure

Makes overall maintenance easier and cheaper
Better guarantee long-term success

- Potential for designed research on trees.

Single blocks

- A volunteer grower can maintain a single block,
- But the time commitment, especially, may be too much for a volunteer
- Time Commitment: $25-30$ years

Carbaugh B3F2s-2 ${ }^{\text {nd }}$ planting

Requirements

- Each block
=approximately 1 acre

- Maintenance per year:
- Planting
- A group of 5 volunteers can plant over 300 seedlings in three hours which includes laying ground cloth, digging, planting, and watering. This is decreased somewhat when planting by seed (which is preferred).
- Weed Control
- Herbicide vs. Landscape Fabric and hand-weeding
- Mowing
- Irrigation
- Fertilization

Yearly Labor Inputs

- Varies
- Depends on type of maintenance
- Main need: One person to guarantee oversight

Our seed orchards in Meadowview, for 10 acres:

- 2-3 days for a crew of 5-7 people for a few thousand seed.
- It takes about 2-3 mornings to spray them with herbicide, which we do twice a year for a total of 5-6 mornings.
- It takes 1-2 days to mow them, and we do that about three times a year, about 6 days.
- Finally, it takes 2 afternoons to fertilize them by broadcasting granular fertilizer, which also could be done with a truck operated by the fertilizer-store folks.

O ther Inputs

- Deer Protection (fence)
- Equipment
- Tractor / Mower / WeedEater

- Seed Protection
- May have in storage (plastic tubes) or get donated (aluminum flashing)
Fertilizer
- We can often get great deals

Q Herbicide/Landscape Fabric

- Latter is more expensive, but can sometimes have it donated.

Funding

- Funding for our current Clapper BC3F2 Orchard comes from:
- PA Chapter
- TACF
- Robertson Endowment (5% interest on $\$ 50,000$)
- Pays for maintenance; wage payroll at University
- Hardwood Forestry Fund - fencing
- National Tree Trust - fencing
- Private donations for PSU Arboretum Establishment

Partnerships

- The Key!
- Utilize established infrastructure, if possible.
- Also helps get grant funding
- USFS seed orchard locations?
- Colleges/Universities
- Partner with other non-profits
- Land trusts

Questions?

M ore Information

- Further Information Available in:

- Volume 16, Issue 1 of TACF Journal which can be downloaded at (see also Volume 8, Issue 1)
http://ecosystems.psu.edu/research/chestnut/information/journal

- Contact Information

Sara Fern Fitzsimmons
Penn State University
206 Forest Resources Lab
University Park, PA 16802
Phone: 814-863-7192 (W)
Phone: 814-404-6013 (C)
E-Mail: sff3@psu.edu

Pennsylvania Chapter of the American Chestnut Foundation (PA-TACF)
Attn: Dave Armstrong
691 Pumping Station Road Hanover, PA 17331-8608

Phone: 717-632-8669

E-mail: darm@blazenet.net

