This document contains notes for the developers that are not included in any of the other documents in this package of requirements for the TACF Tree-DB system. It includes notes, comments, and suggestions regarding issues related to implementation of entities and additional database tables, as well as user interface issues. The specific sections are not in any particular order.

Table of Contents

1Misc items

2Objects

2Trees

2Classification

3Synthetic and Multi-trees

3Addresses and Locations

3Adding to lists

4Picklist management

4Restrictions on selection

4Traits and Observations

4Trait Clusters

4Trait Values

5Units

5People

5Person

5Contact Lists

5Security Model

6Audit trail

6Timestamp on output

6FKs to multiple entities

6Possible framework for queries

6Query Saving

6Notifications

7Issues on “My X”

7Batches and Batch Actions

8Fungus

8Fungus Cross

8User Dashboard

Misc items

(Items on this list might be included in the requirements document, and can be deleted here once it is confirmed that it is included there.)

· All tables need columns for the user and timestamp of creation/update. (This is separate from audit trail requirements which are listed separately.)

· All tables should have a comment column, if not explicitly included in the data dictionary.

· The data dictionaries are not completely consistent in terms of case (lower is preferred) or with the use of '-' or '_' (preferred) in entity and column names. These should be adjusted to be consistent throughout the system. Specific names can be altered to avoid conflicts with reserved words in the database or programming language used, but any changes should be discussed.

· There are a small number of items in the data dictionaries that have a data type of “file.” The actual implementation of these is left to the developers, but must be documented. One option is for a text field, keeping the path to the file on the server. This might be translated into a URL for display that would then fetch the file for the user.

· Since object_id needs to be unique, contact-list contains two columns which both need to be unique. Since the only use of contact_list_id is to be pointed to by contact.contact_list, it might be possible to eliminate the contact-list table, and just have contact point directly to object_id. This is essentially equivalent to having contact_list_id = object_id for an object and its contact list.

· Currently, no maximum text length is specified for text traits. This might be desirable, but in any case, this must always be less than the actual length specified for the text_value column in the observation table.

· It is desirable to be able to specify a format specifier for any float attribute or float type trait.

· It is desirable to be able to specify edit checks for any attribute or trait. (such as phone numbers and zip codes)

· Although there is a designated trait_type of “calculated” there is no mechanism designed to specify the algorithm for calculating such a value. Individual wireframes might specify the calculation for a specific trait, but it would be desirable to have a general mechanism to do so. (This relates to other needs for specifying an algorithm, such as suggestions for default values for short-names for various entities.)

Objects

There are many cases where entities need to refer to an object that might not always be of a single type. Since a Foreign Key can only be specified to point to a single table, this cannot be implemented directly. A solution has been proposed, and is described below, but alternative approaches should be discussed.

The underlying assumption is that all entities have a primary key which is either binary or integer (chosen based on features of the actual RDBMS used) and assigned using a sequence. If a single sequence is used for the system, and not individual sequences for each table, then all PKs will be unique. This actually allows two approaches. First, a column that needs to refer to multiple entities could be of the appropriate type, but simply not designated as a Foreign Key. This might work, but seems to open the door for logical inconsistencies.

The proposed solution adds a table (which may not be indicated in any data dictionary) called object, with a primary key “object_id” and picklist “entity-type,” which might actually be implemented as a separate table or as a picklist. We can call a target-object any object that may need to be linked to by another object that needs to point to objects of more than one type. When we create a target-object in table target with PK of target_id, we will also create a row in the object table, where object_id is the same as target_id, and entity-type points to the entity type of target. The target object can then also have a Foreign Key pointing to object_id. (I'm not sure if the PK can also be designated as this FK. That would depend on restrictions in the RDBMS.) The object that needs to point to target can then have a Foreign key to object_id. This still doesn't assure that only one object points to any object_id, but careful design should be able to avoid this danger.

Trees

Classification

The picklist attribute for trees “classification” probably needs to be handled differently from other picklists, since it currently has over 60 values, and this number might grow. A possible approach is currently being discussed, and if it is not described here by the time this is distributed, potential developers should consider explicitly asking about this.

Synthetic and Multi-trees

(This is an expansion of an item in the requirements document.) There are situations where we do not specifically know one or both of the parent trees of a cross, but we do know that either are one of a small number of trees. For example, in open pollination, if there are only three other trees within a reasonable distance of the mother tree, we know that the other two are possible father parents. On the other hand, bulked seed from many mother trees in the system will be mixed such that mother and father could be any of a number of known trees, but not specific to that open-pollinated seed batch.

There needs to be a mechanism to capture these situations. In some cases, the suspect trees are already in the system, but in some cases, they are not. At this point, is seems possible that we will need to add a “type” attribute to the tree entity to indicate whether the tree is a normal tree or one of several (see elsewhere for other possibilities) special types. The difficulty with this is that most of the special types will not point to a cross and may be missing some other commonly available attributes, which means any screen or report referring to trees may need special logic to handle these cases. One immediate example is in creating a pedigree.

Addresses and Locations

We need to assure consistency regarding addresses for various entities. All addresses should be implemented in as consistent a manner as possible. Currently, the address attributes in the location entity are intended to be a physical address, used for driving directions, for example. The address attributes in person and some other entities are intended to be a mailing address. It may be desirable to create separate address entities for either or both of those, rather than including them in every other entity that needs them.

Also (mentioned here for completeness, but probably also mentioned elsewhere) we need a way to maintain an arbitrary number of phone numbers and email addresses for people and organizations with a status or purpose associated with each.

Locations and point_locations probably need some adjustment. Locations currently have a way to indicate a preferred location, for cases where multiple locations are reported for an object. An example would be if an initial location for an orchard is made using Google Earth, and then someone later actually uses a GPS on site. The same probably needs to be done for point-location, unless location is allowed to have 1 or more point-locations instead of 3 or more. In this case, point-location no longer needs any address fields, and any entity needing a location uses location and never point_location directly.

Adding to lists

There are several types of lists used to restrict data entry to one of a prespecified set of values. (picklists, traits, trait-values, contact roles, etc.) For all of these, it is either required or desired that the system include a means of actively managing the list. (Appropriate permissions need to be specified for each case.) However, even with appropriate permission, a user may only delete an item if it is not linked to or from anywhere else. In this case, changing the status of the item from “active” to “disabled” must prevent that value from being selected in the future. Adding a new item with the same value as one marked “disabled” is not permitted, but the status could be changed back to “active.”

For any user not explicitly authorized to add to a list (unless we create additional permissions specific to this situation) he can still actually add an item, but the status will be “pending” instead of “active.” Only the user who added a “pending” item can select it for use. An authorized user approves the addition by changing the status to “active” or rejects it by deleting the entry, which will also require deleting any records that link to that item. The screen for reviewing these pending entries needs to include the ability to modify any records depending on them so that rejection of the new entry does not lose the entered data.
Picklist management

It is highly desirable to have a way for picklist entries to be able to indicate that the user is required to enter a comment when selecting this value (usually “other (specify)”).

Restrictions on selection

There are a number of additional restrictions that are desirable to be placed on the choice of picklists in various specific situations. These are all considered relatively low priority (unless explicitly stated elsewhere) and are collected here partly for convenience, and partly to see if there is some commonality that would facilitate the implementation in some common manner.

· It would be desirable to restrict the type of container that can be chosen for a batch based on the material type of the batch.

· It would be desirable to be able to restrict type of material or container of a batch that can be stored in a particular location within a facility.

· There may be other batch related screens where it might be desirable to restrict the picklist values based on the material type. If there is a reasonable means to implement this, please let us know, so we can specify all the desired restrictions.

Traits and Observations

A trait can only be deleted if there are no observations recorded for it. Changing the status of a trait to disabled means no new observations may be recorded for that trait.

The ability to add or edit traits should only be done with appropriate scientific review. (This is a process issue, not a system issue.) However, (confirm this is not already in the requirements document) in most cases (also to be determined, based on implementation) a user can add a new trait, in which case the status is set to pending, and an authorized user can either approve (changing the status to active) or delete the new trait, which also requires deleting any observations that have been recorded. The screen for reviewing these pending entries needs to include the ability to modify any records depending on them so that rejection of the new entry does not lose the entered data; the issue here is similar to picklists.
Trait Clusters

A trait-cluster is a group of traits that must always be observed together. The implementation is currently done by creating a “cluster-head” which is just a trait of type “cluster” with an associated trait-class of the same name as the trait. Any trait added to that trait-class is then part of the trait-cluster, and is not allowed to be included in any other trait-class. The “cluster-head” can be in any number of trait-classes (other than trait-classes indicating other trait-clusters). Whenever that trait is selected for inclusion for data entry or reporting, all the traits in that trait-cluster are actually selected.

An example of a trait cluster would be application rates of various cultural treatments. When one applies fertilizer, for example, one needs to know a) what kind/brand was applied, and b) how much fertilizer was used per c) unit area.

Trait Values

A trait-value is one of a restricted set of values that a specified trait is allowed to take. This is used for traits with datatype of “picklist.” It may be possible to implement trait-values within the picklist construct. For example, the picklist name could be “trait-” appended with the name of the trait.

A trait-value can only be deleted if no observations are recorded with that trait-value. However, its status can be changed to “disabled” to prevent it being used in the future.

Units

Within the data dictionaries and trait lists, preferred units are specified. It is desirable, however, to have a conversion system developed within the project that allows for the input of any appropriate units for that measurement.
For example, tree height is desired in feet, but could be recorded in inches (in.), centimeters (cm), or meters (m) and then converted to feet.
Appropriate units and associated conversion factors
will be specified at a later date.

People

The system only maintains a single list of people. Someone must be listed to either access the system or to be referred to by any entity in the system.

Person

The current list of attributes for the Person entity needs to be completely reviewed, and may be adjusted based on the necessary integration with DonorPerfect Online (DPO), the system TACF uses to maintain its membership list.

Contact Lists

Some entities have attributes to link directly to a person, but this was done when it was expected that the object would only need to refer to one person. In most cases, rather than have multiple attributes for contacts, especially where there may be more than one person filling a given type of contact-role, a contact list will be used. The specific implementation is subject to discussion, but the basic concept is that each object will point to a single contact-list. That contact-list will then be pointed to by any number of contacts. Each contact points to 1) the contact-list of which it is a member, 2) the contact-role it represents, and 3) the person who is filling that role. The contact-role indicates whether it is a required role for the object (such as owner for an orchard) and whether there might be more than one person filling that role for a single object (such as secondary contacts for almost anything, or members for a chapter.)

A contact list should be pointed to by no more than one object, or there could be issues of applying a change to the list that is not intended to apply to the other object.

Security Model

Our security model is comprised of three levels, one of which is hierarchical. To access the system and various elements within, a user must have the appropriate 1) permissions, 2) security role, and/or 3) presence on a contact list. The latter, presence on a contact list, integrates the hierarchical structure of TACF (region, chapter, parcel, orchard, etc., etc.) into the security model. For example, one security role may allow access to orchard trees but their contact list presence will specify whether they have access to them regionally, within an entire Chapter, or solely to an individual orchard.
Security roles are meant to provide the lowest common denominator of permissions needed to accomplish an associated task. A system user can have more than one security role. If additional permissions are needed by the user they can be assigned all appropriate roles, or if necessary, ad hoc permissions.

Permissions can also help further link security roles, people, and/or contact roles.

Audit trail

It is desirable to maintain an audit trail of any changes/edits to any entity. Specifically required cases are specified in the appropriate wireframe and/or process flow, but it would be good if an overall approach can be easily implemented. Note that most entities do not allow for deletion.

One aspect of this is that it is often desirable to easily determine who originally created an object. In objects that do not have this information explicitly stored (either in the object itself or in a related object) it may be more efficient to explicitly store timestamp and user of both original creation and last update, rather than having to track back through the audit trail to the original record.

Timestamp on output

During project meetings, there was a request to track the print date of reports by users. While this remains a low priority issue, it is a higher priority to be sure the production date is printed on any output from the system. For formal reports, this can easily be included in the defined header or footer. For cases where the user simply has the browser print the current page, it is desirable to assure that the current date/time is included on any page.

FKs to multiple entities

Possible framework for queries

For a given entity, there will be many screens that require the ability to query that entity for a single or set of objects. However, each screen will have its own context and limitations on the searching to be done. It would be desirable to create a single framework for query, which could then be called on as necessary, with the ability to pass not only starting values for columns selected (perhaps including required joins, or at least tables) and filters (where clauses) but also limits on the extent to which the user can alter them.

Query Saving

Notifications

While this system is not designed to have an active work-flow component, there are some specific requirements of this type that may be best considered in this light. There are a number of data dictionaries and wireframes with a note saying that in some circumstances (a user adds a value to a list, a user reports a tree, a user ships a batch to another user, …) some user needs to be notified of the event so he can take appropriate action (approve or deny the request, confirm receipt of the shipment, ..). There are two ways proposed for such notification. First, the system must be able to send an email to the appropriate person notifying him of the condition. It has not yet been determined how much detail the email should contain, so any implementation should be as flexible as possible. The second method is to provide some flag on the user's dashboard when
he next logs into the system. Although “dashboard” has not formally been defined or required, in this sense, it simply means the default screen a user is shown immediately after logging in.

Issues on “My X”

Batches and Batch Actions

Because a BATCH_ACTION can create and/or dispose of more than one BATCH, each BATCH has a foreign key to the BATCH_ACTION which created it and a foreign key to the BATCH_ACTION which disposed of it. However, when a BATCH is initially created, such as from a CROSS, the connection to the lot could be with either the BATCH or with the BATCH_ACTION. It is perhaps arbitrary which approach is chosen, but the design must be consistent for all actions which convert between BATCHes and other types of entities. The open issue is for each type of BATCH, to make clear what information about its origins must be tracked throughout its existence, and also by whatever (e.g., TREEs) it is eventually transformed into. For example, a TREE needs to know which initial BATCH it came from – and through that, which cross and which parent trees.

A BatchAction is a construct that indicates how a batch was created, and how it was disposed of. Some actions create a batch from something other than a batch (e.g., a seedlot). Some actions truly dispose of a batch (e.g., planting, eating, or physical destruction). Most actions transform a batch into one or more other batches (division or shipping). Combination of more than one batch into a single batch is strongly discouraged in practice, but is allowed by the system. Current design does not allow decreasing the size of a batch; it must be split into more than one batch, one of more of which can then be disposed of.

TERMINOLOGY – this could still be improved. There are four levels

· batch – the thing acted on

· batch-action – a record of an actual operation applied to one or more batches

· batch-action-type – the specific type of action performed

Note that the above three are entities. batche and batch-action objects are frequently created. batch-action-type records are very infrequently created, only when a process is added or modified.

· action-type – a picklist of the basic types of batch-action-type (create, destroy, transform, convert, pass) This list is not likely to ever change.

Need to confirm that all objects that can create batches have appropriate linkage maintained, all the way through the objects that the batch can be converted into.

Restrictions on batch-action-type and action-type:

· in a create action, dispose must be null, we need to assure linkage with source object, and there will be no batch.disposer pointing to the action.

· in a destroy action, create must be null

· in a transform action, create must be null, we need to assure linkage with created object, and there will be no batch.creator pointing to the action.

· in a convert action, create and dispose must be non-null and and different, and object must be null

· in a pass object, create and dispose are the same, object is null, and there may be more than one batch.creator or more than one batch.disposer pointing to the action but not more than one of both. (We can split or merge batches, but not shuffle them.)

Note that the “slurry” batch action is unusual in that it has a number of side effect.

Fungus

The strain serves for fungus batches (plates and slants) as the cross does for seed batches. However, a strain is only created when its first culture (plate or slant) is created. To do this, an isolate_source must first be identified or created. The strain is then created, pointing to that source and to the batch_action, which is then pointed to by the initial plate's batch.creator. More than one strain may be created from a single isolate_source.

A strain “not in culture” has no currently existing plate or slant, and therefore cannot be further cultured. It is presumed to be growing in any canker that was initially inoculated with a sample of that strain, but taking a sample from that canker would create a new strain, with that canker as the isolate_source. In such cases, the two strains could be thus linked together; but it needs to be determined if this is a sufficiently important
relationship to consider adding to the list of supplemental strain attributes.

Fungus Cross

The only difficulty here is that although a cross has two parents, it is not always known until after the results of the cross are seen which is the male and which is the female parent.

This concept can be implemented using either one or two tables. If one table is used, then the primary key is the two strain_id's. This has the difficulty of needing to check both columns for any results for a strain of interest. The alternative with two tables is presented below, but the actual implementation is left to the developers. (There is a separate document on the purpose of this entity. It will eventually be merged here.)

User Dashboard

Though not specified directly
�When? How? Excel sheet?

�Jack, there is still some finessing needed here. I think there is a slight disjunct between how we all view permissions vs. security roles, espeicially in terms of how the security model was built when Bill was around.

�I think, then, that we need to discuss “dashboard” in these notes.

�Unless it comes from some sort of fungus clearinghouse where the strain is known. It’s still the same strain, but from a new source.

