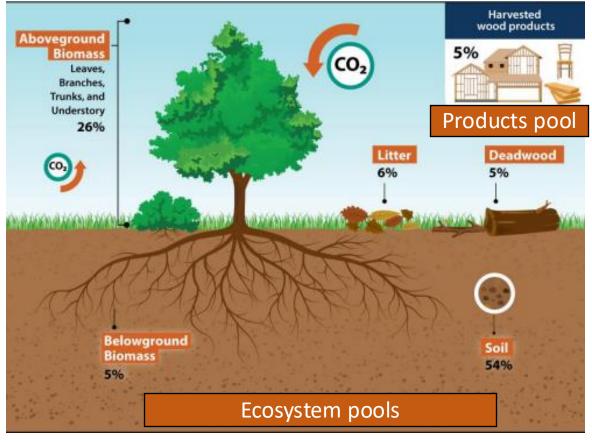
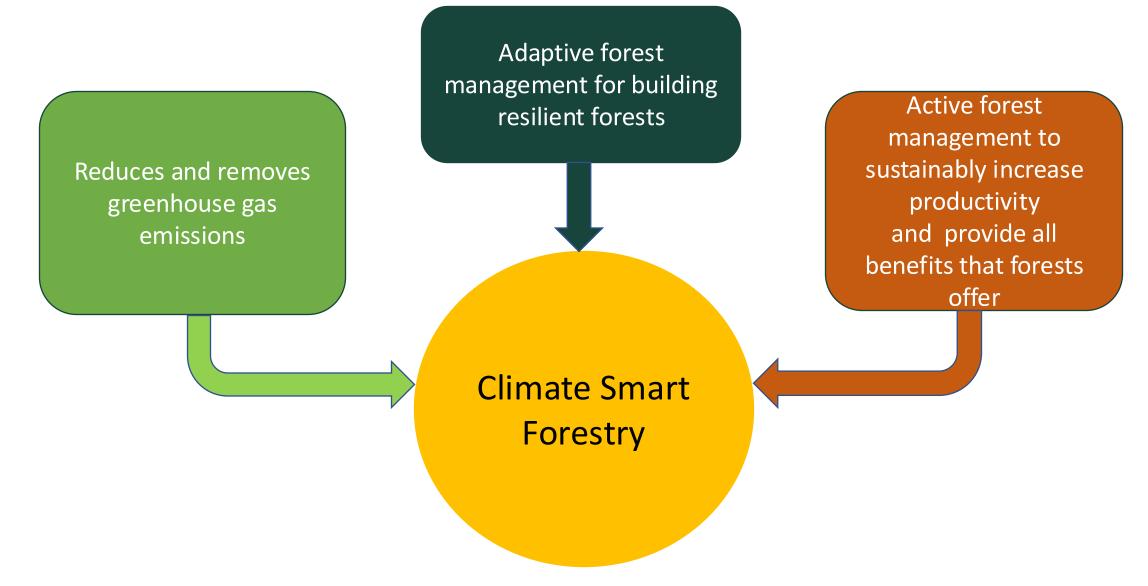
Raju Pokharel, Assistant Professor Shivan Gc, Research Assistant Chad Papa, Research Assistant

Department of Forestry MICHIGAN STATE UNIVERSITY


Forest Carbon and Climate Program Department of Forestry MICHIGAN STATE UNIVERSITY



Background

- Forests play an important role in mitigating the effects of climate change
- In 2020, U.S. Forests sequestered 767 MMT CO₂ equivalent (offset of 13% gross GHG emissions) (Hoover and Riddle 2022)
- Growing recognition of forest's role in climate change has spurred interest to understand how such benefits from forests can be bolstered in the future

Source: Hoover and Riddle (2020)

A framework of climate smart forestry

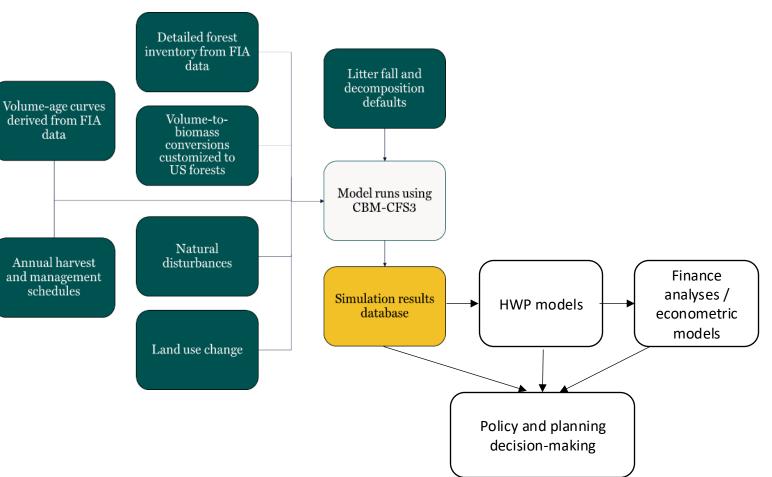
Carbon Management: climate considerations

- Lots of terms!: climate-smart forestry, carbon stewardship, adaptive management, adaptive silviculture
- Carbon is just one management goals among other goals
- Optimizing carbon means balancing climate tradeoffs with other traditional management goals in the context of ecosystem integrity and climate adaptation

Objective

To quantify financial tradeoffs of carbon and timber products resulting from the CBM-CFS management scenarios for increasing carbon compared to the business as usual (BAU) scenario.

Economic Tradeoff of Alternative Forest Management to Enhance Carbon


🛛 🌊 MICHIGAN STATE UNIVERSITY

CBM-CFS3

Forest Growth and Removal Projection

Carbon Budget Model – Canadian Forest Sector (CBM-CFS3)

- Empirically-derived processed based model
 - Forest inventory data
 - Activity Data
 - Harvest schedule
 - LUC
 - Other disturbances
 - Volume-to-biomass estimation
 - Process-based equations for turnover and decay
 - Associated framework CBM-HWP-MD & CMB-HWP-PA

Data and Methods

I. Estimation of timber products generated under business as usual (BAU) and alternative carbon management scenarios from the Harvested Wood Products (HWP) model was obtained using the following formula:

 $Volume = \frac{(Carbon * 2)}{Specific \ Gravity}$

State-specific weighted specific gravities were used for conversion of softwood/hardwood component of forest types in each state

Maryland:		Volume (MCF)
ivial yland.	Volume (MCF) softwood 9424.09737 29.87%	Pennsylvania: softwood 13573.2432 5.38% hardwood 238539.78 94.62%
	hardwood 22130.8831 70.13% 31554.98	total 252113.02
	totalWeighted Specific Gravitysoftwood0.5075104hardwood0.51647761	Weighted Specific Gravitysoftwood0.39312572hardwood0.57964335

Estimation of Timber Products

Data obtained from HWPs model in different product stream categories

Variable	Product – General	Product – Specific	For Export?	Unit
ex.roundwood.MBF	Roundwood	Roundwood - for export	Y	MBF
ex_saw.MBF	Sawnwood	Sawnwood - for export	Y	MBF
		Sawnwood logs, new		
D.saw.MBF	Sawnwood	domestic	N	MBF
R.saw.MBF	Sawnwood	Sawnwood, recycled	N	MBF
ex_veneer.MBF	Veneer	Veneer logs - for export	Y	MBF
D.veneer.MBF	Veneer	Veneer logs, new domestic	N	MBF
ex_D.pulp.tons	Pulp	Pulp - for export	Y	tons
ex_M.pulp.tons	Pulp	Pulp from mill residue - for export	Y	tons
ex_RS.pulp.tons	Pulp	Pulp, recycled - for export Pulp	Y N	tons
D.pulp.tons	Pulp	Pulp	IN	tons
M.pulp.tons	Pulp	Pulp from mill residue	N	tons
R.pulp.tons	Pulp	Pulp, recycled	N	tons
ex_D.CP.MCF	Composite panels	Composite panels - for export	Y	MCF
ex_M.CP.MCF	Composite panels	Composite panels from mill residue - for export	Y	MCF
			N	MCE
D.CP.MCF	Composite panels	Composite panels	N	MCF
		Composite panels from mill		
M.CP.MCF	Composite panels	residue	N	MCF
D.OI.MCF	Other industrial	Other industrial	N	MCF
M.bioenergy.tons	Bioenergy	Bioenergy from mill residue	N	tons
D.PPP.MBF	Poles, posts, pilings	Poles, posts, pilings	N	MBF

Revenue Estimation

Revenue from timber products estimated as:

Revenue TP = (Vol. Harvested * Stumpage Price)

Revenue from carbon credits estimated as:

Revenue $CC = (CO_2 equivalent * Price of carbon)$

where,

CO₂ equivalent is obtained for two emission scenarios from previous work by FCCP

Stumpage Price for Revenue Estimation

Average stumpage price (2016 to 2021) in Pennsylvania

Product Type	Stumpage Price	Unit		
	Hardwood			
Logs	253.9	\$/Mbf		
Pulp	3.6	\$/ton		
Poles, post, pilings	253.9	\$/ton		
Softwood				
Logs	94.1	\$/Mbf		
Pulp	3.7	\$/ton		
Poles, post, pilings	94.1	\$/ton		

Average stumpage price (2010 to 2021) in Maryland

Product Type	Stumpage Price	Unit			
	Hardwood				
Logs	270	\$/Mbf			
Pulp	3	\$/ton			
Poles, post, pilings	270	\$/ton			
Softwood					
Logs	156	\$/Mbf			
Pulp	4	\$/ton			
Poles, post, pilings	156	\$/ton			

Starting year 2023, stumpage prices were increased by 3% every year for HWs and 2.5% per year for SWs.

Starting year 2023, stumpage prices were increased by 3% every year for HWs and 1% per year for SWs till 2032 and 2.5% starting 2033.

Percentages chosen based upon historical timber price trends in PA from 2007 to 2017 as per Jacobson (2022)

Forest Management Practices Costs Data for Cost Estimation

Data obtained from Environmental Quality Incentives Program's (EQIP) payment schedule 2022

Forest Practices Costs in Pennsylvania

Type of Forest	EQIP	Per unit cost of implementing	Type of Forest	EQIP	Per unit cost of implementing the
Management Practice	Code	the management practice	Management Practice	Code	management practice
Thinning	666	\$327.2/acre			
Prescribed fire	338	\$75.95/acre	Thinning	666	\$317.98/acre
	490		Prescribed fire	338	\$68.18/acre
Site preparation cost in	490	\$221.74/acre	Site preparation cost in	490	\$200.85/acre
clearcut areas			clearcut areas		
Stand establishment cost	612	\$813.70/acre for HW species and		640	
in closerout areas		6200 67 Jacro for SNV spacios	Stand establishment cost	612	\$797.73/acre for HW species and
in clearcut areas		\$390.67/acre for SW species	in clearcut areas		\$380.97/acre for SW species
Afforestation cost	612	\$813.70/acre	Afforestation cost	612	\$696.02/acre
Restocking cost	612	\$636.20/acre	Restocking cost	612	\$380.97/acre
Fencing cost	382	\$387/acre	Fencing cost	382	\$393/acre
Silvopasture planting cost	381	\$128/acre	Silvopasture planting cost	381	\$128/acre

Starting year 2023, all forest practices costs were increased by 1.69% per year to account for inflation.

Forest Practices Costs in Maryland

Economic Tradeoffs of Carbon and Timber Products Estimation

To quantify financial tradeoffs of carbon and timber products resulting from the CBM-CFS management scenarios, Net Present Value for each modeled scenario were estimated and compared to BAU scenario.

$$NPV = \sum \frac{R}{(1+i)^t} - \sum \frac{C}{(1+i)^t}$$

R is the revenue generated from the harvested wood products and/or carbon credits under each management scenario for a certain duration [Short term (2023 to 2032), Medium term (2023 to 2050), Medium-long term (2023 to 2070) and Long term (2023 to 2100)]

C is the costs associated with implementing each modeled management scenario including BAU for the same duration

i is the minimum acceptable real rate of return (RoR) and

t is the time in years during the period considered.

Management Scenarios in CBM-CFS

1. Business-as-usual (BAU) Scenario:

-Represents continuation of current management practices (harvests, thinning, and prescribed burn). Projection starts from 2020 till 2170.
-Basis for comparison to alternative scenarios

<u>Alternative Management Scenarios</u>

-Created by changing BAU parameters beginning in 2020 representing potential changes

in future management decisions or disturbance events.

-Scenarios relate to one specific practice or objective, where only one BAU practice

is changed and the rest of the BAU remains the same.

Business-as-usual simulation

Maryland			
Land-use change			
Forest loss	-2,989 ha yr ⁻¹	Forest Gain	+2,796 ha yr ⁻¹
Natural disturbances			
Wildfire	176 ha yr ⁻¹	Disease	11,368 ha yr ⁻¹
Insect defoliation	3,970 ha yr ⁻¹	Abiotic (wind, animal)	2,656 ha yr ⁻¹
Insect mortality	151 ha yr ⁻¹		
Forest management practice	S		
Prescribed fire	155 ha yr ⁻¹		
(~40% understory consumption)	-		
State forests			
Clearcut	13,245 tC yr ⁻¹	Group selection / overstory removal	11,187 tC yr ⁻¹
(90% merchantable biomass removal)	$(55,195 \text{ m}^3 \text{ yr}^{-1})$	(30% merchantable biomass removal)	(43,348 m ³ yr ⁻¹)
Shelterwood cut	190 tC yr ⁻¹	Thinning	923 tC yr ⁻¹
(50% merchantable biomass removal)	$(720 \text{ m}^3 \text{ yr}^{-1})$	(30% merchantable biomass removal)	$(3,846 \text{ m}^3 \text{ yr}^{-1})$
Private forests			
Clearcut	31,520 tC yr ⁻¹	Shelterwood cut	84,136 tC yr ⁻¹
(90% merchantable biomass removal)	(131,350 m ³ yr ⁻¹)	(50% merchantable biomass removal)	(85,322 m ³ yr ⁻¹)
Seed tree cut	32,390 tC yr ⁻¹	Group selection / overstory removal	10,842 tC yr ⁻¹
(70% merchantable biomass removal)	(212,575 m ³ yr ⁻¹)	(30% merchantable biomass removal)	(86,890 m ³ yr ⁻¹)
Diameter-limit-cut	23,839 tC yr ⁻¹	Thinning	19,384 tC yr ⁻¹
(70% merchantable biomass removal)	$(214,919 \text{ m}^3 \text{ yr}^{-1})$	(30% merchantable biomass removal)	$(64,209 \text{ m}^3 \text{ yr}^{-1})$

Land-use change			
Forest loss	-10,453 ha yr ⁻¹	Forest Gain	+3,454 ha yr ⁻¹
Natural disturbances			
Wildfire	960 ha yr ⁻¹	Disease	3,957 ha yr ⁻¹
Insect defoliation	47,832 ha yr ⁻¹	Abiotic (wind, animal)	5,053 ha yr ⁻¹
Insect mortality	374 ha yr ⁻¹		
Forest management practices	1		
Prescribed fire			
(~40% understory consumption)			
State forests			
Clearcut	7,894 tC yr ⁻¹	Group selection / overstory removal	95,869 tC yr ⁻¹
(90% merchantable biomass removal)	(39,806 m ³ yr ⁻¹)	(30% merchantable biomass removal)	(371,573 m ³ yr ⁻¹)
Shelterwood cut	206,873 tC yr ⁻¹	Thinning	49,718 tC yr ⁻¹
(50% merchantable biomass removal)	(787,685 m ³ yr ⁻¹)	(30% merchantable biomass removal)	(194,179 m ³ yr ⁻¹)
Private forests			
Clearcut	49,462 tC yr ⁻¹	Shelterwood cut	173,546 tC yr ⁻¹
(90% merchantable biomass removal)	(245,280 m ³ yr ⁻¹)	(50% merchantable biomass removal)	(591,618 m ³ yr ⁻¹)
Seed tree cut	281,346 tC yr ⁻¹	Group selection / overstory removal	205,761 tC yr ⁻¹
(70% merchantable biomass removal)	(1,093,346 m ³ yr ⁻¹)	(30% merchantable biomass removal)	(80,329 m ³ yr ⁻¹)
Diameter-limit-cut	203,833 tC yr ⁻¹	Thinning	543,168 tC yr ⁻¹
(70% merchantable biomass removal)	(791,733 m ³ yr ⁻¹)	(30% merchantable biomass removal)	(2,074,145 m ³ yr ⁻¹)
US Forest Service / other federal for	rests		
Shelterwood cut	21,911 tC yr ⁻¹	Thinning	66 tC yr ⁻¹
(50% merchantable biomass removal)	(85,610 m ³ yr ⁻¹)	(30% merchantable biomass removal)	(265 m ³ yr ⁻¹)
Group selection / overstory removal	11,660 tC yr ⁻¹		
(30% merchantable biomass removal)	$(46,798 \text{ m}^3 \text{ yr}^{-1})$		

What landowners are paid for

- Avoided emissions
 - An indirect mitigation activity
 - I don't harvest <u>what I say I would have harvested</u> and get paid for the carbon stocks (above some threshold) that I leave in the forest
- Removals
 - A direct mitigation activity
 - when my carbon stocks increase, I am paid for it

Carbon Price

- Price per ton of CO₂ equivalent used for financial analysis was \$8.29 dollars for year 2022 (as accessed in Oct 6,2022).
- Transaction cost of carbon was deducted from the market price to get the price of carbon used for financial analysis
- Transaction cost of carbon was estimated using the formula proposed by Pearson et al. (2013).

 $TC = 1 + 0.23 * P^{c}$

where TC is the transaction cost of carbon,

1 represents the fixed cost of carbon (\$1 per ton) and 0.23*P^c represents the variable cost of carbon which is assumed to be 23% of the market price of carbon.

Starting year 2023, carbon price was assumed to increase by 2% every year

Live Carbon Prices Today

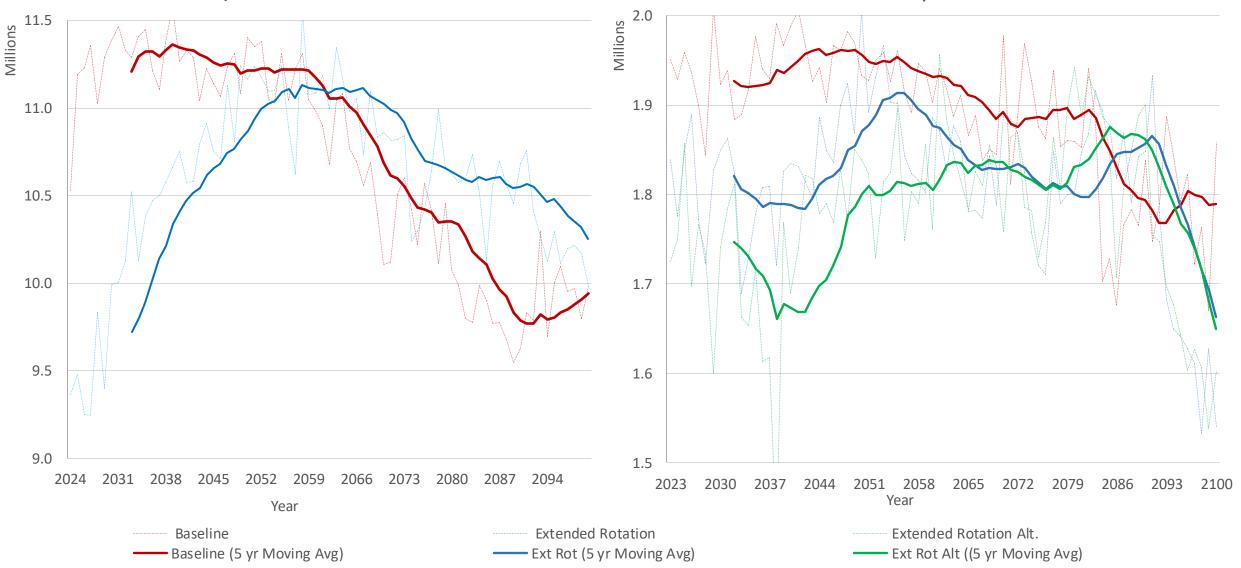
CarbonCredits.com Live Carbon Prices	Last	Change	YTD
Compliance Markets			
European Union	€78.67	0.00 %	-1.93 %
California	\$30.83		-3.72 %
Australia (AUD)	\$28.00	0.00 %	-45.10 %
New Zealand (NZD)	\$80.30	0.00 %	+17.31 %
South Korea	\$14.24	0.00 %	-43.12 %
Voluntary Markets			
Aviation Industry Offset	\$2.98	0.00 %	-62.75 %
Nature Based Offset	\$7.40	0.00 %	-47.44 %
Tech Based Offset	\$2.37	0.00 %	-53.35 %

CarbonCredits.com Real-time Pricing (Updates Every 5 Mins)

Click here to learn how carbon credits are priced.

https://carboncredits.com/carbon-prices-today/?sl=cc-googleads&gclid=Cj0KCQjw852XBhC6ARIsAJsFPN2FVsJRnxzxC42TZMKSM-Ue3wo7hVTTiOkz1eaJdi_sqLdghAJ853gaAkTdEALw_wcB

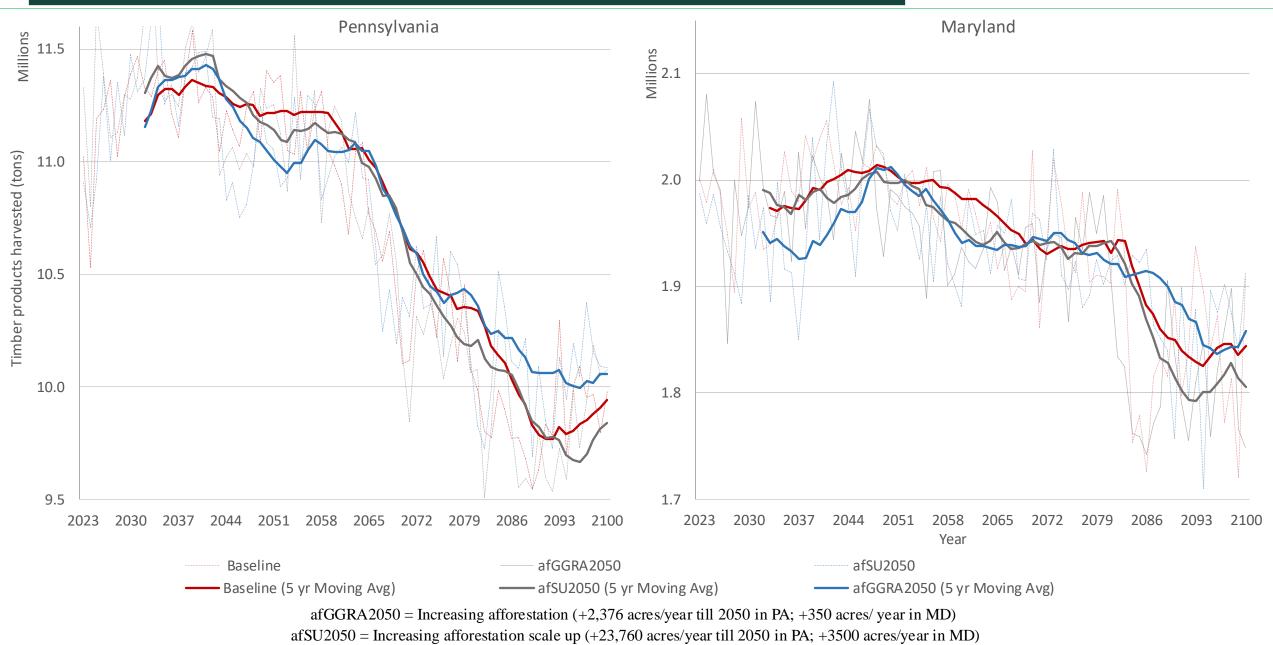
Findings


🐔 MICHIGAN STATE UNIVERSITY

BAU Vs Extended Rotation

Timber products harvested (tons)

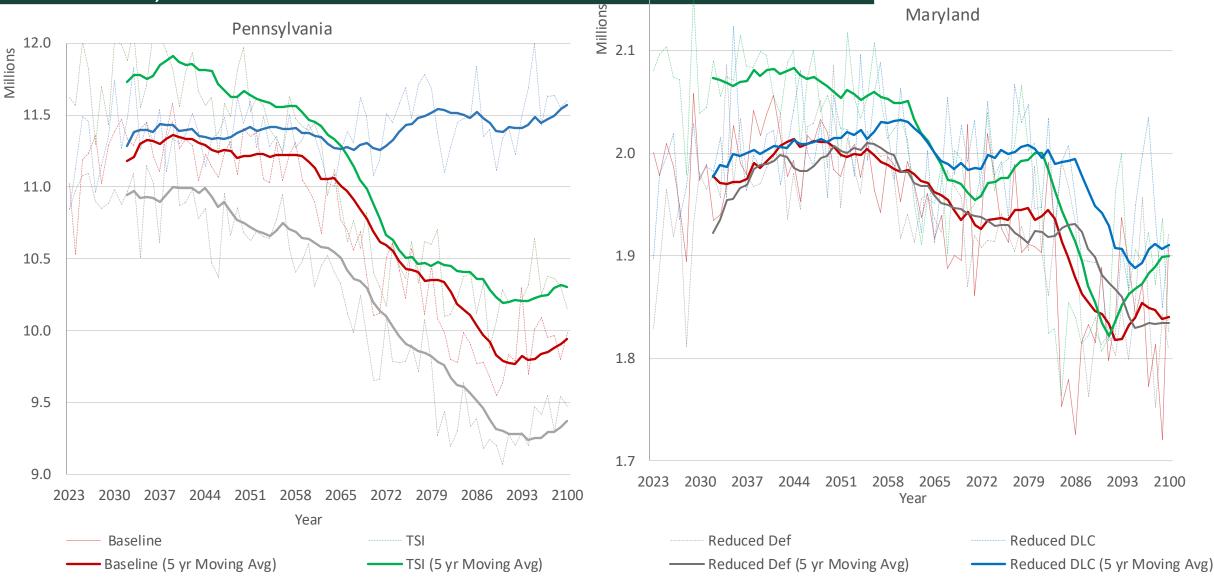
Pennsylvania



Extended Rotation= Increasing average harvest age of stands (+30 years on H/SWs; -10 years on Aspen in PA) (+30 years on HWs and +20 years on loblolly pine till 2170 in MD) Extended Rotation Alt.= Increasing average harvest age of stands (+30 years on HWs and +40 years on loblolly pine till 2170 in MD)

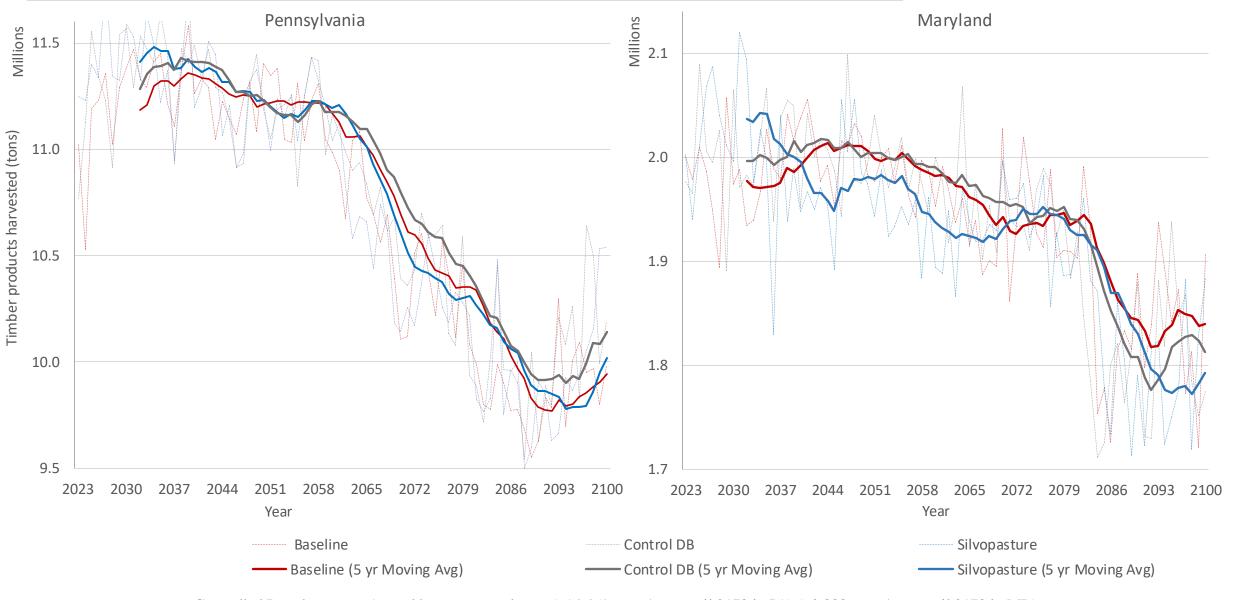
🐔 MICHIGAN STATE UNIVERSITY

BAU Vs Afforestation


🐔 MICHIGAN STATE UNIVERSITY

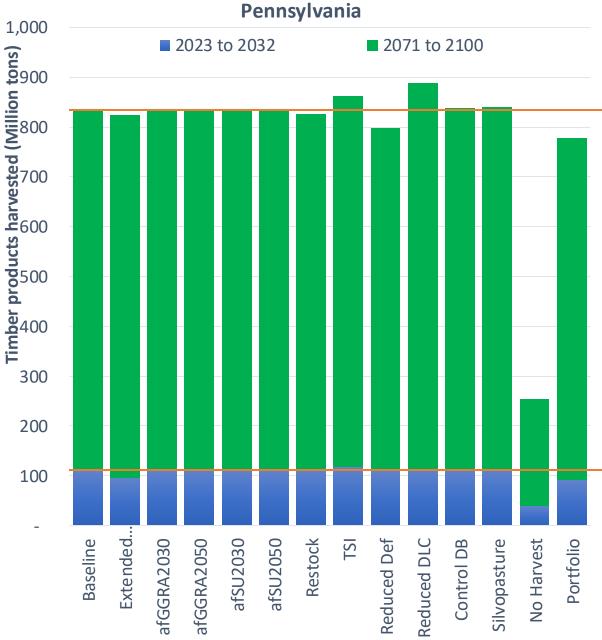
BAU Vs Restocking

Restock = Increasing supplemental planting (+4,508 acres/year till 2170 in PA; +2500 acres/year till 2030 in MD), Restock Alt = Increasing supplemental planting (+2500 acres/year till 2050)


BAU Vs TSI, Reduced DLC and Reduced Deforestation Scenarios

TSI = Annual thinning rate (+14,892 acres/year till 2170 in PA; +5500 acres/year in MD); Annual prescribed burn rate (+25,000 acres/year till 2170 in PA; +500 acres/year in MD) Reduced DLC = (-30,559 mt C/year until DLC = 0 in 2027; DLCs stay at 0 until 2170 in PA) (-2384 mt C/year until DLC = 0 in 2030; DLCs stay at 0 until 2170 in MD) Reduced Deforestation = (-5,149 acres/year until 2170 in PA) (-800 acres/year until 2030; then return to baseline in MD)

MICHIGAN STATE UNIVERSITY


BAU Vs Controlled Deer Browse and Silvopasture Scenarios

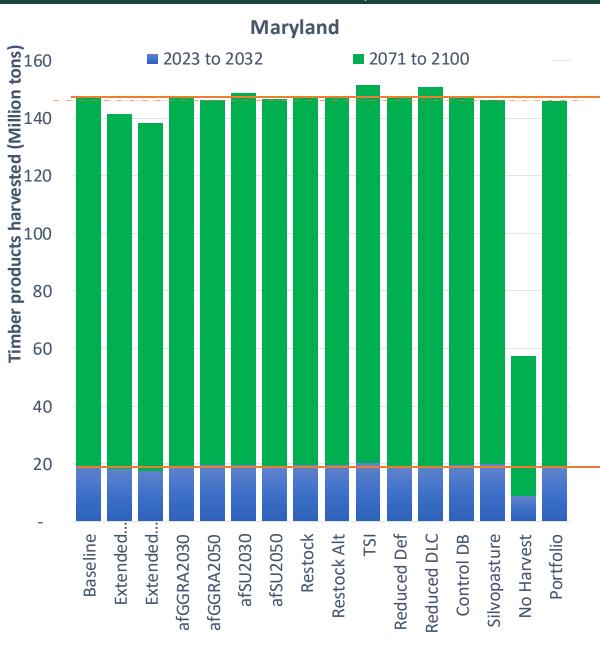
Controlled Deer browse = Annual browse control rate (+14,459 acres/year until 2170 in PA) (+2,000 acres/year until 2170 in MD) Silvopasture = Annual Silvopasture planting rate {+15,250 acres/year (0.5% of eligible acres) until 2170 in PA} (+3,511 acres/year until 2170 in MD) Economic Tradeoff of Alternative Forest Management to Enhance Carbon

Pennsylvania: Timber Products Harvested				
Scenarios	Harvested timber products (in million tons) at the specified time frame			
	Short Long Term			
	Term			
Baseline	112		834	
Extended				
Rotation	96		825	
afGGRA2030	113		836	
afGGRA2050	113		833	
afSU2030	112		833	
afSU2050	112		836	
Restock	112		826	
TSI	117		862	
Reduced Def	109		798	
Reduced DLC	113		889	
Control DB	114		837	
Silvopasture	113		841	
No Harvest	39		254	
Portfolio	92		777	

Pulp: 49% Sawlogs: 38.5% Composite panels: 7.5% Bioenergy: 4.6% Poles, posts and pilings: 0.25%

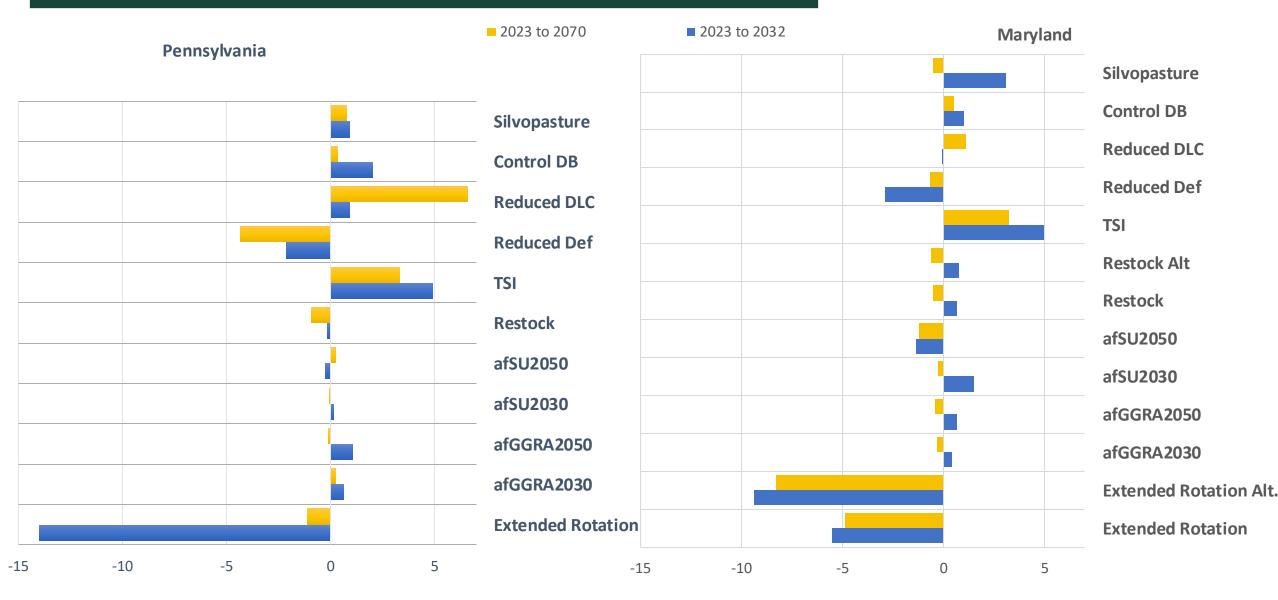
Cumulative timber products harvested

MICHIGAN STATE UNIVERSITY



MICHIGAN STATE UNIVERSITY

Maryland: Timber Products Harvested


Scenarios	Harvested timber products (in million tons) at the specified time frame		
	2023 to 2032	2023 to 2100	
Baseline	19	147	
Extended Rotation	18	141	
Extended Rotation			
Alt.	17	138	
afGGRA2030	19 147		
afGGRA2050	19	146	
afSU2030	20	149	
afSU2050	19	147	
Restock	19	147	
Restock Alt	19	147	
TSI	20	152	
Reduced Def	19	147	
Reduced DLC	19	151	
Control DB	19	147	
Silvopasture	20	146	
No Harvest	9	57	
Portfolio	18	146	

Pulp: 68% Sawlogs: 25% Composite panels: 4% Bioenergy: 2% Poles, posts and pilings: 1%

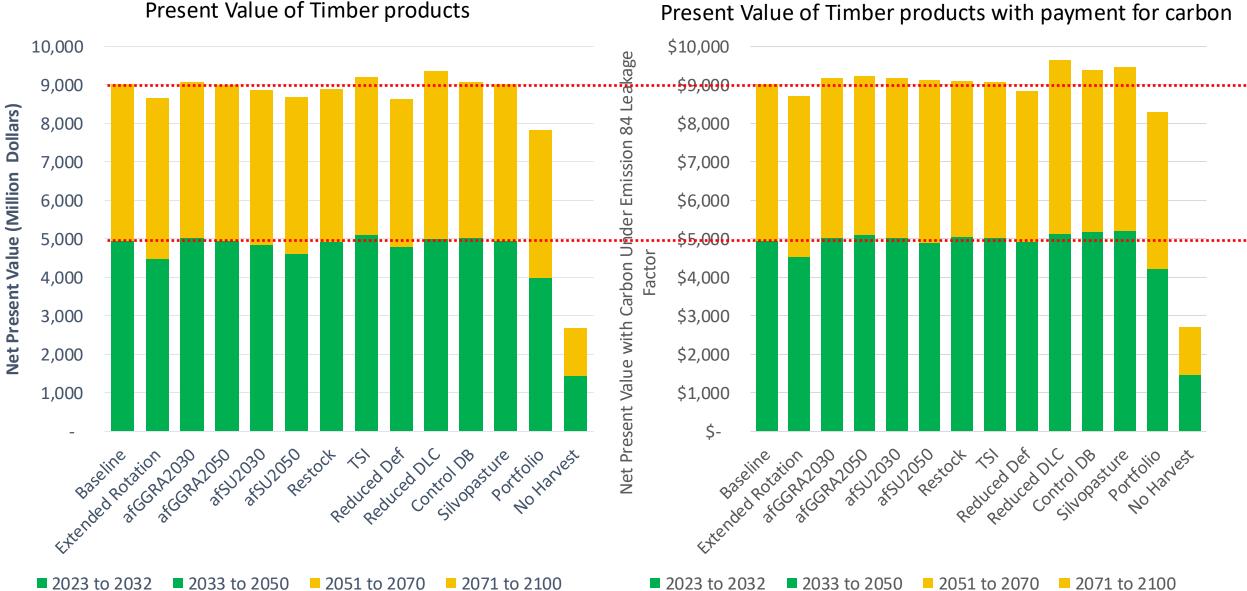
Cumulative timber products harvested

Change in timber products harvested compared to BAU (%)

% Change in volume harvested compared to BAU

Pennsylvania: NPV

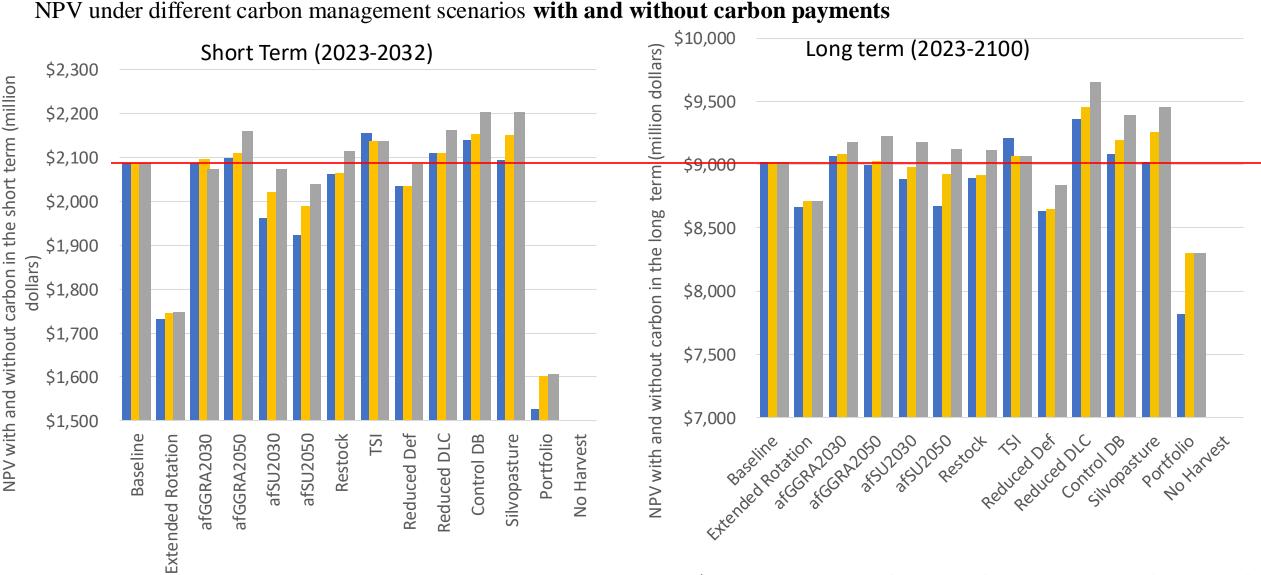
Net Present Value (Million Dollars)


Present Value of Timber products with payment for carbon

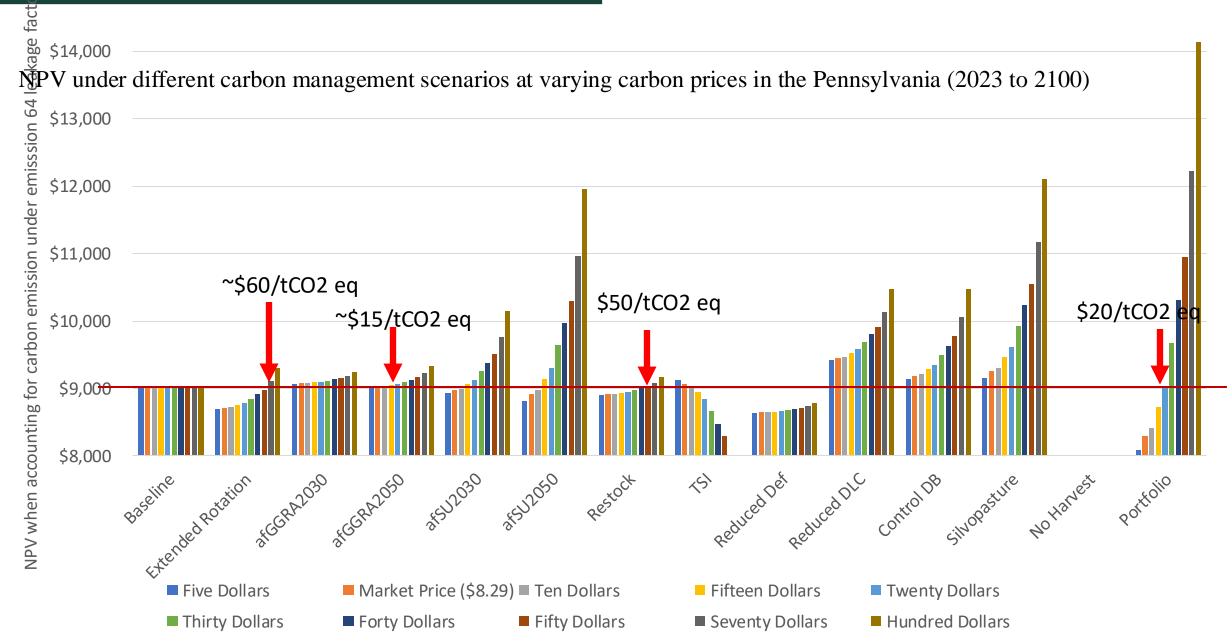
Present Value of Timber products

Economic Tradeoff of Alternative Forest Management to Enhance Carbon

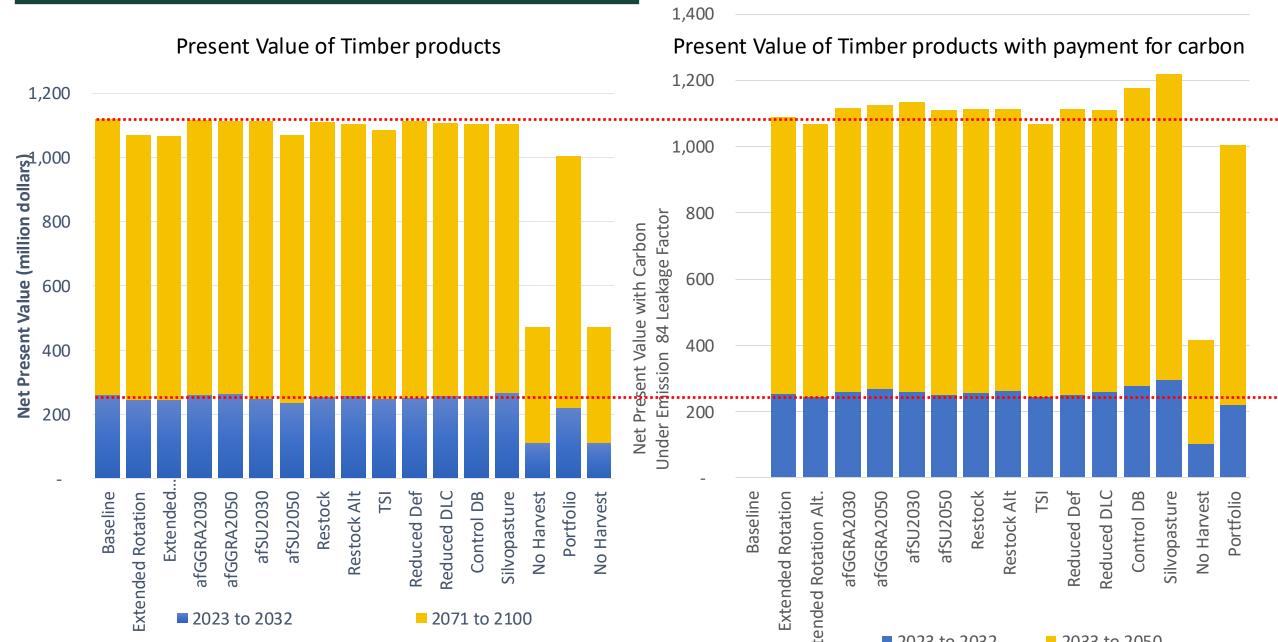
MICHIGAN STATE UNIVERSITY


Pennsylvania: NPV

2033 to 2050 2051 to 2070

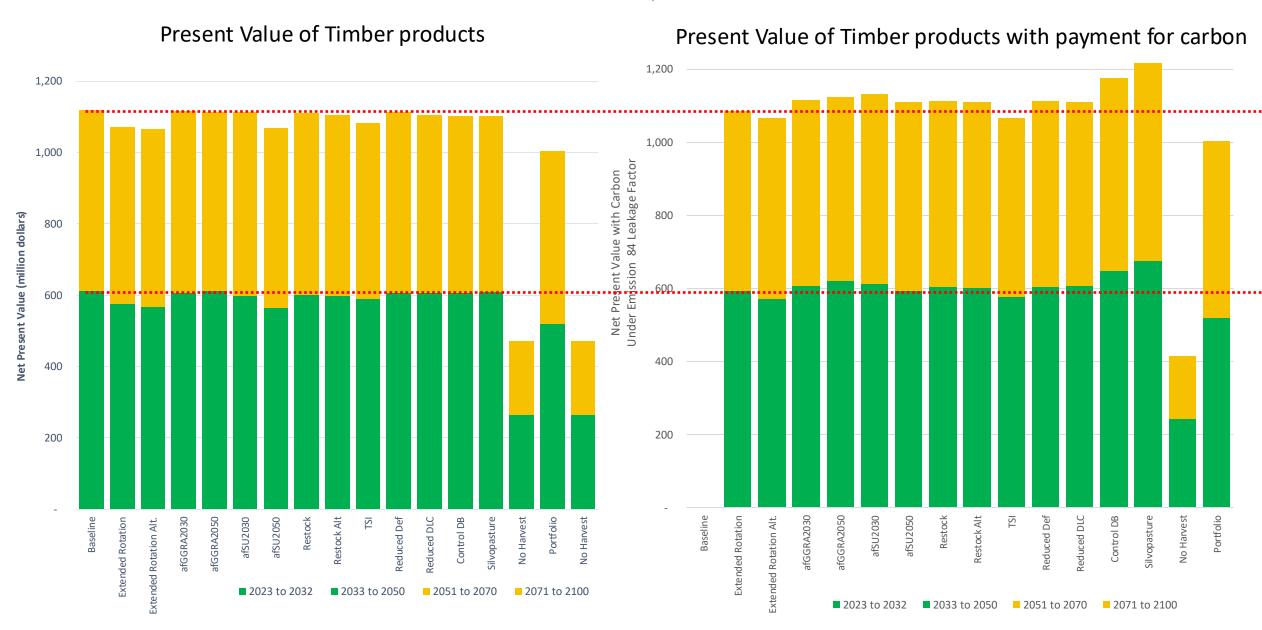


Pennsylvania: NPV

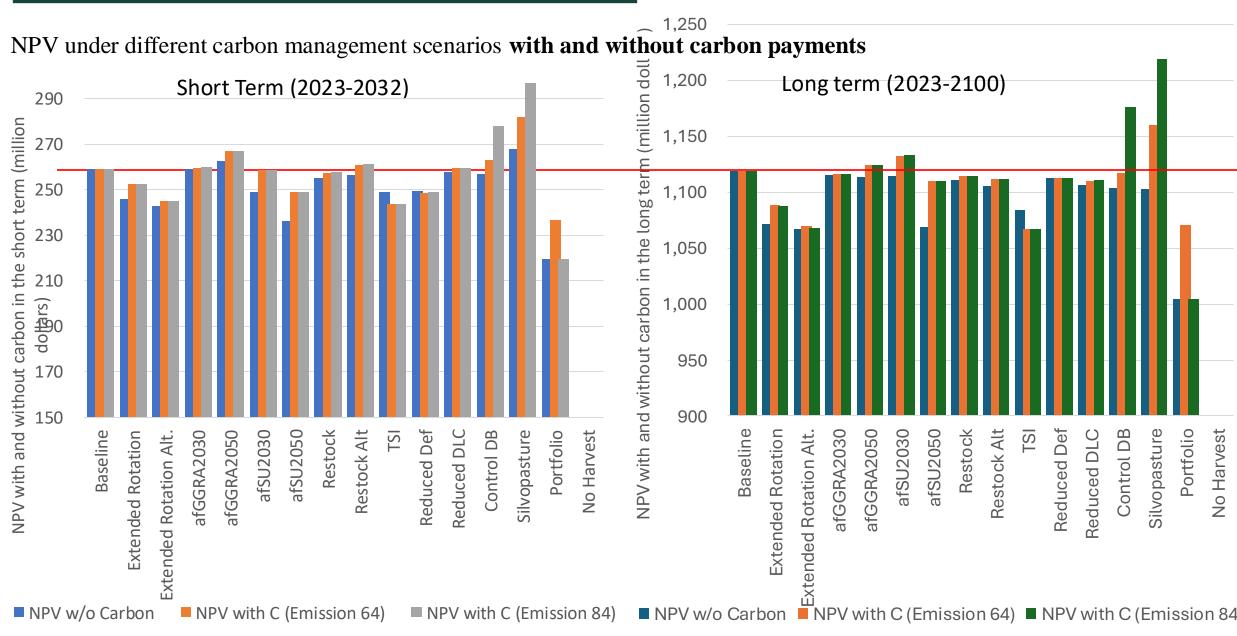

■ NPV w/o Carbon ■ NPV with C (Emission 64) ■ NPV with Carbon (Emission 84) ■ NPV w/o Carbon ■ NPV with C (Emission 64) ■ NPV with Carbon (Emission 84)

Pennsylvania: NPV (carbon price sensitivity)

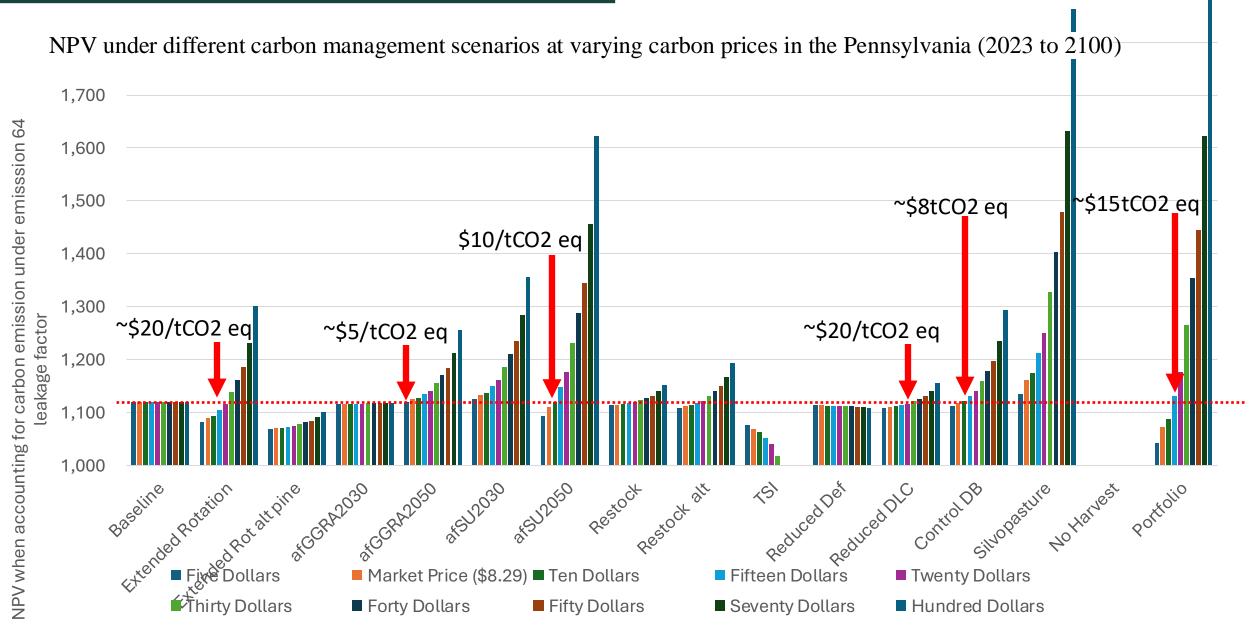
Maryland : NPV



Maryland : NPV


MICHIGAN STATE

1,400



Maryland: NPV

Maryland : NPV (carbon price sensitivity)

MICHIGAN STATE UNIVERSITY

Thank you !

<u>Contact</u>

Raju Pokharel, PhD

Assistant Professor

517-353-9447

raju2020@msu.edu

Shivan GC

Research Assistant

gc@msu.edu

