Ecosystem Nutrient Cycles Fall 2005

Instructor: Jason Kaye, ASI 416 (office) Schedule #: 566278 Credit: 3 hours Contact info: office phone 863-1614; e-mail: jpk12@psu.edu Office hours: W & TH 11:15 – 12:15 in ASI 416, or by appointment Prerequisites: Introductory course in chemistry plus ecology, agroecology, or biogeochemistry

Regular meeting time and location: T, Th 9:45-11:00 in 209 Chambers

Text: Golley, F.B. 1993. The history of the ecosystem concept in ecology. Yale Univ. Press. **Other Reading:** Papers to be assigned during the semester from Angel.

Overall course goals: Students will develop knowledge of the biologically important nutrient cycles in terrestrial ecosystems, including linkages between nutrient cycling and energy (carbon) and water flow.

Specific course objectives: Students will complete the class with an understanding of: 1) classic and contemporary theory of biogeochemical cycles at the ecosystem scale, 2) variability in nutrient cycling rates among the major unmanaged and managed ecosystem types, 3) ecosystem responses to natural disturbance and human management, and 4) common and cutting-edge methods of ecosystem analysis.

My teaching philosophy: Discovery is one of the most exciting aspects of science. Students should be given the opportunity to experience discoveries through creative coursework. This should be a student-centered course, your feedback (both anonymously and through formal and informal meetings with me) will help me adapt this course to your interests and needs. Class time will include a mixture of lectures, discussions of primary literature and case studies, and group and independent projects. Independent projects will give students the opportunity to focus on nutrient cycling in ecosystems where they conduct research.

General Schedule:

This schedule will form the foundation for the course, but may change in response to student input. The first part of the course will cover major theoretical advances in ecosystem science and the second part of the course will consider applications of ecosystem theory to environmental management and problem solving.

Week of:	Theme	Reading	Assignment	In class
Aug 30	History of the	Golley Chap. 1 - 3	Th: Expectations	Th: Discuss your
Sept 1	Ecosystem			ecosystem-pools, fluxes,
	Origin of nutrients		Th: <u>Box/arrow</u>	spatial scale.
			diagram & state	
Sent (Essenten sereste	Caller Char 4 5	<u>factors</u>	T. Staada stata han madala
Sept 8	The Odume & IBP	Odum 60: Hagan 02	<u>Student Weetings</u>	T: Steady state box models
Sept 8	The Odullis & IBr	Odulli 09, Hageli 92		evolution: Odum: Hagen
Sept 13	The water cycle	Golley 6-7	Th: Develop C mass	Methods: C balance eddy
Sept 15 Sept 15	The C cycle	Swank and Douglas 74	balance for your	covariance.
~			ecosystem	
				Methods: small watersheds
Sept 20	The C cycle			T:Discuss C mass Balance
Sept 22	The C cycle			
Sept 27	Watershed	Walker & Syers 76		Th: Duscuss Walker and
Sept 29	experiments w/	Bormann & Likens 67		Syers Model
	Dhosphorus			
	rnosphorus			
Oct 4	Nitrogen	Vitousek & Reiners 75		Th' Blind mass balance P
Oct 6	1 (lilogon	Aber et al. 98		
		Perakis and Hedin 02		
Oct 11	Exam		T: Exam	Methods: ¹⁵ N
Oct 13	Open the black box		Th: P mass balance	
	I: Isotopes	Nadelhoffer et al. 99	for your ecosystem	
			Th: Last date for	
			"question-based"	
Oct 19	II: Migrobial appacta	Davidson at al. 00	review paper topic	
Oct 18	of N cycling	Hart & Stark 07		
00120	of iveyching.	Schimel and Bennett 04		
Oct 25	III: species effects	Binkley & Giardina 98		Th:Blind mass balance N
Oct 27	on ecosystems	Wardle & Zac. 05		
	·	Hooper & Vitousek 98		
	Nutrient cations	Drinkwater et al. 98		
Nov 1	Nutrient cations	Jobbagy et al. 04	T: Paper 1 st draft due	Th: Discuss all 4 papers
Nov 3		Yanai et al. 05	Th: <u>N mass balance</u>	
	Ecological	Reiners 86	for your ecosystem	
Nov 9	Stoicniometry	Magill and Cole 81		Door review pepers
Nov 10	Peer review papers			r cor review papers
Nov 15	Complex Adaptive	Scheffer et al. 00		Th: Blind mass balance K
Nov 17	Systems			
	Applications I:			
	forest harvesting	Likens et al. 70		
	II: Mass balance in	Burke et al. 02		
	agriculture	Galloway Cowling 02		
Nov 22	No class? Fri schedule			
Nov 24	No class: Thanksgivi	ng Deutenister (L. Comult 0.4	The Cation was	
INOV 29	III: riparian buffers	Ferterjonn & Correll 84	halance for your	
Dec I		Robertson et al. 00	ecosystem	Methods: trace gas fluxes
	Eases	Matson et al. 98	Paper final draft due	memous. nace gas nuxes.
		111115011 Ct ul. 70	i upor mur uran ude.	

Dec 6	V: the global C	Schlesinger		Discuss: p 8-9in Golley
Dec 8	cycle	Lal?		
	Scepticism of the	Sagoff		
	concept	O'Neill		
Dec 12-16	Final exam week		Take home final	

Assignments, Attendance, Grading, etc.

- Classroom attendance is expected.
- Exams will be a combination of essay, short answer, and multiple choice.
- If you need disability accommodations in this class, please see me ASAP. Information regarding disability is confidential.
- My lectures and supplemental materials will be posted on Angel.
- Grading:
 - 1. Participation in class discussion (20 %)
 - 2. Seven "short assignments" underlined above (15%)
 - 3. Three group mass balance assignments bolded above (20%)
 - 4. Paper including peer reviews of others (20 %)
 - 5. Midterm (15 %)
 - 6. Final (10 %)

University Academic Integrity Statement

Academic integrity, as defined by University Faculty Senate Policy 49-20, is the pursuit of scholarly activity free from fraud and deception and is an educational objective of this institution. Academic dishonesty includes, but is not limited to, cheating, plagiarizing, fabrication of information or citations, facilitating acts of academic dishonesty by others, having unauthorized possession of examinations, submitting work of another person or work previously used without informing the instructor, or tampering with the academic work of other students.