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Abstract—Cichlid fishes represent an outstanding case of explosive evolution and offer extraordi-
nary opportunities to investigate the evolutionary processes that have led to such diversity. Throughout
the world. however. these fishes are threatened by overfishing, introduction of exotics, habitat
destruction. and pollution of the environment. Determination of the specific status of local taxonomic
units is critical for the development of programs both to conserve and to utilize these fishes for food.
tourism. disease control. and scientific investigations. Rapid speciation within these fishes, however.
has resulted in a paucity of characters for discriminating among species. Our experiences in Africa and
Central America demonstrate that in situ behavioral studies, integrated with morphological and
genetic analysis of taxonomic units, are vital to determining the specific status and relationships among
evolutionarily significant units (ESUs). The critical element in determining whether a taxon is an ESU
is knowledge of its reproductive biology; therefore. it is imperative that we develop a muitidisciplinary

emphasis in biodiversity studies.

The phrase evolutionarily significant unit (ESU)
implies that (1) a heritable difference exists among
populations; (2) an important statistical difference
exists in a group of characters among units; and (3)
a classification system is being used. From a pure
conservation point of view, any such ESU must be
protected. We are not suggesting that the term ESU
replace our concept of a species or other formally
recognized taxonomic category but that it be used
to recognize unique entities that need protection.
For example, Waples (1991) suggested that a pop-
ulation should be considered an ESU if it is repro-
ductively isolated from other conspecific popula-
tions and if it represents an important component in
the evolutionary trajectory of the species. Evolu-
tionarily significant units may also be defined geo-
graphically, in that they may be a particular com-
munity or ecosystem that harbors a highly diverse
fauna or flora or is a site of high endemism. Por-
tions of a widespread population that has a disjunct
distribution may be designated as an ESU. For
example. the longnose sucker Catostomus catosto-
mus (Forster) is panmictic; however, there exists a
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small disjunct population in the Monongahela
River system in West Virginia, Maryland, and
Pennsylvania (Stauffer et al. 1995). If this disjunct
population were designated as an ESU, then per-
haps a vehicle would be in place to protect this
unique population of a widely dispersed species.
Minimally, an ESU may be a population that
exhibits a distinctive behavior. The importance of
behavior in distinguishing among fish taxa was pio-
neered by Trewavas (1983), who used behavioral
characters when delimiting three genera of tilapiine
fishes. In many cases, behavioral studies are instru-
mental in recognizing novel entities, assigning pop-
ulations to taxa (Brooks and McLennan 1991), and
estimating phylogenetic relationships among taxa
(Wenzel 1992; deQueiroz and Wimberger 1993).
Nowhere is the designation and protection of
ESUs needed more than in tropical ecosystems. It is
estimated that as many as half of the extant species
inhabit the approximately 6% of the earth covered
with tropical rain forests (Myers 1988). With re-
spect to fishes, there are 66 families endemic to
tropical freshwaters, whereas only 18 are endemic
to temperate freshwaters (Berra 1981); moreover,
greater than 70% of the described species of fishes
inhabit the tropics (Moyle and Cech 1988). One of
the most speciose families of freshwater fishes is the
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Cichlidae, thus many of the examples that follow
will be from this family.

Species Concepts

In part, the concept of the ESU involves grouping
individuals or populations into distinct taxa, which,
in turn. depends on the definition of species or
some lower hierarchical taxon. Subsequent to the
evolutionary synthesis (Mayvr 1982a: Eldridge 1985)
there has been much debate concerning species
concepts (e.g., Simpson 1961: Wiley 1981: Donog-
hue 1985: Paterson 1985; Templeton 1989: Mayr
1992: van Devender et al. 1992). This debate can be
attributed to a certain degree to some biologists
treating species as epiphenomena. whereas others
regard species as participants in the evolutionary
process (Mayr and Ashlock 1991). We would agree
with Mayr (1992) that a nondimensional (nonhis-
torical) concept of the species is the one with which
most biologists are concerned and which is probably
the most applicable to conservation and protection
programs. We argue. however, that it is difficult to
develop an unambiguous species definition given
the mixture of conspecific populations, incipient
species. and good species that predominate in allo-
patric populations of freshwater fishes, such as the
cichlids. Hence, the ESU provides an effective con-
cept upon which to base conservation practices
when dealing with rapidly evolving groups, such as
the cichlids.

Speciation

The concept of speciation involves the origin of a
unique gene pool. The processes responsible for the
ecological separation and reproductive isolation of
populations have long been debated. Intralacustrine
allopatric speciation has been widely purported to
account for the rapid and extensive speciation by
cichlid fishes in the African Great Lakes (Fryer
1959: Fryer and Iles 1972; Mayr 1982b). The first
stage in allopatric speciation is geographical segre-
gation of a single population into two or more
subpopulations. Speciation culminates with the de-
velopment of reproductive isolating mechanisms
that prevent interbreeding even if the geographical
barriers are removed and the populations experi-
ence secondary contact (Mayr 1942). Both pre- and
postmating isolating mechanisms influence repro-
ductive isolation among heterospecific populations.
Postmating isolating mechanisms include gametic
mortality, zygotic mortality. hybrid inviability, and
hybrid sterility; premating isolating mechanisms in-
clude incompatible reproductive anatomy, ecologi-

cal separation, ethological isolation. and allochronic
mating. The development of many premating bar-
riers are the direct consequence of changes in be-
havioral characters.

Several investigators have suggested that specia-
tion of cichlids may have occurred sympatrically as
well as allopatrically (Frver and Iles 1972; McKaye
et al. 1990). In svmpatric speciation models, repro-
ductive isolating mechanisms originate within the
dispersal area of the offspring produced by a single
deme (Hartl and Clark 1989) and premating isola-
tion develops before populations inhabit distinct
niches (Bush 1975). Controversv over the mecha-
nisms of sympatric speciation center around the
question of how reproductive isolation can arise
prior to a barrier to gene flow (Mavr 1982b). Koss-
wig (1963) suggests that populations can be isolated
ecologically without overt geographical barriers,
due to differences in habitat preference in a varied
environment. Factors that may contribute to eco-
logical isolation of populations inciude competitive
isolation (McKaye 1980). seasonal isolation (Lowe-
McConnell 1959), mate selection isolation (Trewa-
vas et al. 1972: Barlow and Munsey 1976). and
runaway sexual selection (Dominev 1984 McKaye
1991; McKaye et al. 1993). In addition. intrapopu-
lational variation in the expression of a given geno-
type due to environmental conditions permits the
maximum use of a heterogenous habitat (Liem and
Kaufman 1984; Via and Lande 1983). Within the
cichlids, alternative adaptations (polvmorphisms)
may also have contributed to the extensive adaptive
radiation and sympatric coexistence of closely re-
lated forms (West-Eberhard 1983).

Cichlid fishes throughout the tropics and specif-
ically in the Great Lakes of Africa are generally
recognized as one of the most dramatic examples of
extensive trophic radiation and explosive specia-
tion. Discrimination among species of Cichlidae can
be difficult because differences among species may
be very small and intraspecific variation may be
relatively large (Frver and Iles 1972: Ribbink et al.
1983). The acquisition of reproductive isolation
without significant morphological change makes it
difficult to distinguish African haplochromine cich-
lids (Lewis 1982). Attempts to use starch gel elec-
trophoresis have been inconclusive for delimiting
species (Kornfield 1974, 1978). McKaye et al
(1982) electrophoretically examined three color
morphs of Petrotilapia iridentiger Trewavas (a cichlid
endemic to Lake Malawi) that could not be distin-
guished morphometrically. They found no fixed al-
leles at any of the 25 loci studied. although allele
frequencies were heterogeneous among taxa. sug-
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sesting that the color morphs represented isolated
gene pools or incipient species. Marsh (1983) sub-
sequently described these morphs as distinct spe-
cies.

Mitochondrial DNA (mtDNA) has been widely
recognized as an important tool for resolving rela-
tionships among closely related species. Mitochon-
drial DNA has also been used to delimit higher
raxonomic categories. Meyer et al. (1990) used
ntDNA sequence divergence to demonstrate the
monophyly of the Lake Victoria cichlid species
fock, and Meyer et al.’s data suggest the possible
monophyly of the Lake Malawi flock. Monophyly of
the Lake Malawi Hock has been implied by mor-
phological studies (Stiassny 1981) and supported by
additional mtDNA analyses (Kocher et al. 1993).
Moran et al. (1994) conducted studies of phyloge-
netic relationships among African cichlids by means
of restriction fragment length polymorphism
RFLP) analysis of mtDNA. Recent work based on
DNA sequencing indicates that mtDNA may be
adequate for discriminating among Lake Malawi
cichlids in some lineages (Bowers et al. 1994). Mo-
ran and Kornfield (1993) caution, however, that the
rapid speciation of Malawian cichlids may have pre-
vented sorting of mitochondrial lineages, allowing
distantly related species of Lake Malawi cichlids to
share mtDNA polymorphisms derived from a com-
mon ancestor. These results suggest that mtDNA
data alone cannot delimit certain Lake Malawi taxa.

Detailed behavioral studies, however, have con-
sistently proven useful in distinguishing among spe-
cies. Many morphologically and genetically similar
species can be separated based on breeding colora-
tion and behavioral characteristics (Ribbink et al.
1983; Witte 1984; McKaye and Stauffer 1986;
Stauffer 1988; Stauffer and McKaye 1988; Stauffer
and Bolts 1989; Stauffer et al. 1993). Holzberg
(1978) and Schroder (1980) first used behavioral
observations to conclude that the blue-black color
form of Pseudotropheus zebra (Boulenger) was re-
productively isolated from the blue color morph
Pseudotropheus callainos Stauffer and Hert (Pseudo-
rropheus abbreviated as P. hereinafter). That many
cichlid species, when artificially crossed under lab-
oratory conditions, can produce viable hybrid off-
spring forces the taxonomist to rely solely on the
study of premating isolating mechanisms when de-
limiting species. Thus, behavior plays a significant
role in defining sympatric species and is essential in
inferring whether or not allopatric species would
potentially exhibit reproductive isolation.

Sexual Selection

Both natural and sexual selection have contrib-
uted to speciation within Cichlidae. The frequently
conflicting forces of natural and sexual selection
were first noticed by Darwin (1871). Natural selec-
tion arises from differential viability and fertility,
whereas sexual selection results from differential
mate acquisition. In effect, a particular male trait
can be a handicap in terms of survival but result in
more fertilizations (Trivers 1972: Nur and Hasson
1984). Sexual selection pressures can shift mean
male character values far from their equilibria at-
tained under natural selection alone (Kirkpatrick
and Rvan 1991). Although sexual dimorphism can
arise from other causes (Lande 1980: Hedrick and
Temeles 1989), it is often a useful indicator of the
magnitude of sexual selection acting on a character.
Commonly observed dimorphisms in body size.
plumage. coloration. or weaponry can often be as-
cribed to this force.

In a recent review. Kirkpatrick and Ryan (1991)
classified models of female-choice selection accord-
ing to whether selection on preferences was direct
or indirect. They concluded that in many species
preferences evolve in response to direct selection
on female fitness. For example. female convict cich-
lids. Cichlosoma nigrofasciarum (Gunther) consis-
tently prefer larger males when given a choice be-
tween two mates (Noonan 1983: Keenleyside et al.
1985). This preference may be interpreted as direct
selection for reproductive success because larger
males provide better defense and resources for the
young. Female preferences for males with larger
nuptial gifts (Thornhill and Alcock 1983) or for
those carrying a lower load of a communicable
disease (Borgia and Collis 1990) have a direct pos-
itive effect on female fitness.

Several models can be classified as invoking indi-
rect sexual selection on male and female prefer-
ences. In the “good genes” models, female prefer-
ence is derived from the improved fitness of a
female’s progeny because of genes acquired from
the male. One such model postulates that females
prefer males carrying genes that make those males
resistant to parasites (Hamilton and Zuk 1982)..

Conversely, “nonadaptive” models have been
postulated in which female preference is not related
to the forces of natural selection acting on the
population. Hert (1989) demonstrated that the egg
spots of male Astatotilapia elegans Trewavas could
stimulate spawning and that female P. aurora Bur-
gess spawned more frequently with males possess-
ing higher numbers of egg spots (Hert 1991). Fisher
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(1930) was the first to propose a “runaway” process,
which has since been extensively modeled (O’Donald
1980; Lande 1981; Kirkpatrick 1982) and discussed
(Arnold 1983; Kirkpatrick 1987). One feature in the
nonadaptive models is that the runaway process can
be initiated by arbitrarv female preferences, and
several recent studies have shown that female pref-
erence for particular male characters can evolve
long before the characters themselves. Basolo
(1990, 1991) demonstrated a preexisting preference
for caudal swords in swordless species of the poeci-
liid Xiphophorus. Meyer et al. (1994), however, pro-
vided genetic evidence suggesting that the ancestor
of this genus possessed a sword. Preferences may
frequently arise from sensorv biases (Ryan and
Keddy-Hector 1992) and may be an inherent prop-
erty of sensory systems (Enquist and Arak 1993).
Kirkpatrick and Ryan (1991) interpret this to mean
that direct selection was responsible for the evolu-
tion of female preferences. Ryan and Rand (1993)
have stressed the importance of recognizing that
sexual selection and species recognition are ele-
ments of a single process: the matching of male
signal traits to female preference function.

The existence of speciose flocks of animals re-
stricted to isolated habitats may best be explained
by sexual selection in many cases. The large number
of Drosophila species endemic to Hawaii led Ringo
(1977) to elaborate on the hypothesis of Spieth
(1974) that sexual selection can accelerate the di-
vergence of populations. Carson (1978) suggested
that sexual selection could create coevolutionary
races between particular male characters and fe-
male preferences, leading to the evolution of in-
creasingly complex courtship behaviors. Possible in-
teraction of founder effects and sexual selection
during speciation was suggested by Kaneshiro
(1989) as an explanation for the Drosophila species
flock. Dominey (1984) generalized these hypotheses
to account for rapid speciation in African cichlids
and recognized that the cichlids share many char-
acteristics with the Hawaiian Drosophila, including
sexual dimorphism, lek-based breeding systems in-
voking a high degree of female choice, and isolated
local populations.

We propose that the variations observed in male
coloration, bower size (breeding platform), and
courtship behavior among closely related cichlid
species are the result of intraspecific sexual selec-
tion (McKaye 1991). In many instances, morpho-
logically similar populations may in fact be subspe-
cies, sibling species, or incipient species at various
stages of speciation (Mayr 1963). Divergence in
female preference for male secondary sexual traits

may lead to assortative mating of populations prior
to a sympatric speciation event or during secondary
contact following allopatric speciation; thus, one or
several sexually selected traits may become differ-
entiated with each speciation event. Strong sexual
selection may cause differentiation of breeding be-
haviors even in the face of considerable gene tlow
and among diverging populations in secondary sym-
patry. Natural selection may act to differentiate
morphological and behavioral traits further. There-
fore. it is our contention that the use of both mor-
phological and behavioral data to delimit closely
related species, such as the Lake Malawi cichlids. is
essential. Below we discuss the use of color, bower
shape. courtship behavior, and feeding behaviors to
discriminate among cichlid species. We consider
color form and bower shape to be manifestations of
behavioral characteristics via female choice. In
many cases, behavioral studies mav first identifv
novelties that indicate which specific forms might be
valid species.

Case Histories Demonstrating the Value of
Behavioral Studies

Role of Color in Delimiting Species

The incredible variety of color patterns within the
haplochromine cichlids of the African Rift lakes is
well known (see Figures la-f: Fryer and Iles 1972:
Greenwood 1981; Ribbink et al. 1983: McKaye and
Stauffer 1986), and we consider it to be essential in
female mate selection. The existence of unique
color patterns is recognized to be suitable for de-
limiting species (Barlow 1974; Barel et al. 1977:
Greenwood 1981; Hoogerhoud and Witte 1981:
McKaye et al. 1982, 1984), and in many cases new
species have been recognized solely on the basis of
male color pattern (McElroy et al. 1991). Although
color is certainly a morphological character, we re-
gard it as a manifestation of female preference.
which is a behavioral trait.

The following rock-dwelling (mbuna) taxa were
first hypothesized to be valid species based on male
breeding color and later substantiated based on
morphometrics and meristic data: P. aurora (Bur-
gess 1976), P. barlowi (McKaye and Stauffer.1986).
P. flavus (see Figure la), P. ater, P. cvanus (Stauffer
1988), P. xanstomachus (Stauffer and Boltz 1989),
and P. callainos (Stauffer and Hert 1992), among
others.

Holzberg (1978) and Schroder (1980) demon-
strated that color patterns of females may also be
useful in delimiting species. such as within the P.
zebra species complex. Male P. callainos are pale
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FIGURE 2.—A plot of the second principal component (PC2: morphometrics) and the first principal component (PC1:

meristics) based on data from P. callainos and P. c.f. zebra -

blue (Stauffer and Hert 1992) and closely resemble
an undescribed P. c.f. zebra from Mazinzi Reef,
Lake Malawi. Many female P. callainos are white,
whereas white females of P. c.f. zebra from Mazinzi
Reef have never been collected. This observed dif-
ference in female color pattern prompted us to
complete a more detailed morphological study of
these two forms. Based on sheared principal com-
ponent analysis of morphometric data and principal
component analysis of meristic data (see Stauffer
1993 for an explanation of the methods employed),
the two taxa were shown to be heterospecific (Fig-
ure 2).

The importance of color pattern is not limited to
the haplochromine fishes in the Great Lakes of
Africa. Our work over the past 3 years throughout
the Great Lakes basin in Nicaragua has impressed
upon us, as it has earlier workers (Meek 1907;
Barlow and Munsey 1976), the great variation
among cichlids in coloration and body form in iso-
lated water bodies (see Figures 3a—c). For example,
in the midas cichlid Cichlasoma citrinellum group,
several species have been described. With respect to
this commercially important group of cichlids,
Meek (1907:122) stated, “Of all the species of fishes
in these lakes, this one is by far the most variable. [
made many repeated efforts to divide this material
- .. in from two to a half-dozen or more species, but
in all cases I was unable to find any tangible con-

‘mazinzi.”

stant characters to define them. To regard them as
more than one species meant only to limit the num-
ber of material at hand. and so I have lumped them
all in one.” Three species of this group are presently
recognized by Barlow and Munsey (1976), although
Villa (1982) only recognized two. Our behavioral
work, however. confirms that the three species rec-
ognized by Barlow and Munsey (1976) are, in fact.
valid. Furthermore, our direct underwater observa-
tions that these forms assortatively mate by color
and that their habitat preferences and nest forms
differ suggest that at least three additional unde-
scribed species are also present. Preliminary mor-
phological analyses of two of these forms (Figure 4)
confirm that they are distinct from the type speci-
mens housed in the Natural History Museum (Lon-
don).

Similarity in color patterns, however, may be mis-
leading. For example, many authors (e.g., Fryer and
lles 1972; Ribbink et al. 1983) regard the two pop-
ulations of the Lake Malawi blue-black (BB; Figure
ld) color form of P. zebra at Nkhata Bay and
Thumbi West Island to be conspecific. McKave et
al. (1984) found differences in allele frequencies
between northern and southern populations of BB
P. c.f. zebra although there were no fixed allelic
differences. Examination of the morphological data
(Figure 5) suggests that these two populations are
actually heterospecific. Another example includes
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FIGURE 4.—A plot of the sheared second principal component (PC2: morphometrics) and the first principal
component (PC1; meristics) based on data from three members of the Cichlasoma citrinellum species group: Cichlusoma
citrinellum type material from the British Museum (Natural History), Cicilasoma c.f. citrinellum “grenada” from Lake

Nicaragua, and Cichi c.f. cim

the orange blotch (OB) morphs of many Lake
Malawi cichlids (e.g. P. zebra, Labeotropheus tre-
wavasae Fryer [see Figure 1b), and P. tropheops
Regan). Color differences would initially suggest
that these forms are heterospecific with the simi-
larly shaped, normally colored individuals: however,
closer examination shows that all OB morphs are
female, suggesting that these color forms are not
valid species.

Color differences in allopatric populations may
also be misleading. For example, two populations of
a Melanochromis species occur at Chinyamwezi and
Chinyankwazi Islands in Lake Malawi. Because
male coloration differed between the two popula-
tions, Ribbink et al. (1983) regarded these taxa to
be heterospecific. Examination of the morphomet-
rics and meristics of 13 populations of this form
from other locations within Lake Malawi revealed
slight clinal variation in shape pattern (Bowers and
Stauffer 1993), suggesting that these populations
are conspecific. This conclusion was supported by
allozyme analysis, which showed very low variation
at 3 polymorphic loci out of 24 loci that were as-
sayed. Because the morphological evidence indi-
cated no differences in shape among the popula-
tions, and variation in male coloration tended to be
greater within than among populations, Bowers and

“Xiloa” from Laguna de Xiloa.

Stauffer (1993) described this form as a single spe-
cies. Melanochromis heterochromis Bowers and
Stauffer (Figure lc).

Color pattern may also provide insight into the
phylogeny of certain groups, although care should
be taken when interpreting the results. For exam-
ple, the prevalence of the BB color morph in most
of the rock-dwelling cichlid genera (see Figure
1d-e) and some sand-dwelling forms (Figure Lf)
throughout Lake Malawi suggests that this color
pattern is primitive, whether one uses the common-
ality principle or outgroup comparisons (Smith and
Koehn 1971; Watrous and Wheeler 1981). Con-
versely, the presence of the red dorsal fin within £.
c.f. zebra “red dorsal,” P. c.f. zebra “cobalt mbenji.”
and Labeotropheus trewavasae implies that this char-
acter state is a product of convergent or parallel
evolution.

In their recent monograph of non-mbuna haplo-

chromines endemic to Lake Malawi, Eccles and.

Trewavas (1989) suggested that similarity of color
patterns among species may reflect phyletic rela-
tionships. For example, the “polvstigma” pattern,
which consists of three longitudinally arranged fea-
tures of either stripes or a series of spots or
blotches. is restricted to the genus Nimbochromis
(Figure 6d). Conversely, the following melanin pat-

|
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FIGURE 5.—A plot of the sheared second principal component (PCZ: morphometrics) and the first principal
component (PC1; meristics) based on data from two populations of the blue-black color form of zebra mbuna P. zebra
from Nkhata Bay (northern population) and Thumbi West Island (southern population), Lake Malawi, Malawi.

terns are found in more than one genus: “kirkii”
pattern (Figure 6a), which emphasizes the horizon-
tal elements of the very common and hence perhaps
pleisiomorphic color pattern, is represented by
Nyassachromis breviceps (Regan), Lethrinops lethri-
nus Giinther, and Protomelas kirkii (Giinther); trans-
verse bars (Figure 6b), is represented by Placidochro-
mis johnstoni (Giinther), Lethrinops gossei Burgess
and Axelrod, and Alticorpus peterdaviesi (Burgess and
Axelrod); “dimidiatus” pattern (Figure 6c), which is a
simple, straight, midlateral band, is represented by
Dimidiachromis dimidiatus (Giinther) and Taenio-
chromis holotaenia (Regan); oblique band (Figure 6e),
which consists of an oblique band or series of spots
from nape to middle of the caudal base. is represented
by Docimodus evelynae Eccles and Lewis, Mvlochromis
anaphyrmus (Burgess and Axelrod), and Taeniolethri-
nops praeorbitalis (Regan); three-spot patterns (Figure
6f), which consists of a series of spots that appear
along the position of the midlateral component of the
horizontal element of the plesiomorphic pattern, is
represented by Otopharynx ovatus (Trewavas) and
Copadichromis quadrimaculatus (Regan), which
have the spots below the upper lateral line, and
Cyrtocara moori Boulenger and Ctenopharvnx pictus
(Trewavas), which have the spots above or on the

upper lateral line: and “rostratus” pattern (Figure
6g), which consists of three series of large spots
approximately in the position of the stripes or rows
that constitute the kirkii pattern, is represented by
Fossochromis rostratus (Regan) and Eclectochromis
festivus (Trewavas). Consequently, Eccles and Tre-
wavas (1989) considered the rostratus color pattern
a result of parallelism and thus uninformative.

Role of Bower Shape in Delimiting Species

Research on the breeding behavior of several
Lake Malawi sand-dwelling fishes has demonstrated
that the process by which females choose mates is
complex. McKaye et al. (1990) found a preference
for males with larger bowers in female Copadichro-
mis conophorus Stauffer, LoVullo, and McKaye.
Males of this species form huge leks that may have
more than 50.000 males at the height of the breed-
ing season (McKaye 1983, 1984). In comparisons’
between paired bowers, males on larger bowers
received a two- to threefold increase in female at-
tention (bower entry and circling behavior) over
males on smaller bowers. In a smaller lek occupied
by 20 to 50 Otopharynx argyrosoma (Regan) males,
the males occupying bowers closest to the center of
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FIGURE 6.—Examples of the color patterns recognized by Eccles and Trewavas (1989) as being phvlogenetically
informative for Lake Malawi cichlids: (a) kirkii pattern, (b) transverse bars, (¢) dimidiatus pattern. (d) polystigma
pattern, (e) oblique band. (f) three-spot pattern. and (g) rostratus pattern.

the lek received approximately three times as many
matings as did the males around the periphery
(McKaye 1991). In order to separate the effect of
bower size and bower location, we substituted arti-
ficial bowers in the lek of Lethrinops c.f. parvidens
(Trewavas). Several tagged males located on the
periphery of the lek had not been observed to fer-
tilize any eggs during a 3-week period during which
approximately 1,800 eggs were laid in other areas of
the lek. The same tagged males were observed fer-
tilizing between 15 and 30 eggs per day when large
(approximately 22 ¢m in height) bowers were placed
on top of the tagged males existing ones. In another
arena, female Lethrinops aurirus (Regan) preferred
to mate with males whose bowers contained more
peripheral bumps. In general. these data suggest
that within several species, a specific character,
bower size, can influence the mate preference of
females and that males will evolve behaviors that
increase the size, shape, or position of their bower
in order to attract more females.

In Lake Malawi, 10 major bower forms. which
vary in size from small depressions in the sand to
elaborate castles, have been identified (McKaye
1991). Within each class of bower shape, significant
quantitative variation in bower dimensions occurs.
Among bowers within a lek, height varies depend-
ing on the age of the bower and the activities of the
male. Some dimensions of the bower remain con-
stant, despite variation in height, strongly suggest-
ing a genetic basis to bower form. The diameter of
the breeding platform of the bowers of Copadichro-
mis conophorus appears to be species specific
(Stauffer et al. 1993). We demonstrated that three
closely related species in the Copadicliromis euci-
nostomus group had differently shaped bowers, and
we used these data to aid in the differentiation of
these species. Similarly, McKaye et al. (1993) stud-
ied five leks of Tramitichromis near Nankumba Pen-
insula in Lake Malawi and demonstrated significant
differences in bower shape among these leks. These
data are discussed in more detail in the section
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FIGURE 6.—Examples of the color patterns recognized by Eccles and Trewavas (1989) as being phvlogenetically
informative for Lake Malawi cichlids: (a) kirkii pattern, (b) transverse bars, (¢) dimidiatus pattern. (d) polystigma
pattern, (e) oblique band. (f) three-spot pattern. and (g) rostratus pattern.
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(approximately 22 ¢m in height) bowers were placed
on top of the tagged males existing ones. In another
arena, female Lethrinops aurirus (Regan) preferred
to mate with males whose bowers contained more
peripheral bumps. In general. these data suggest
that within several species, a specific character,
bower size, can influence the mate preference of
females and that males will evolve behaviors that
increase the size, shape, or position of their bower
in order to attract more females.

In Lake Malawi, 10 major bower forms. which
vary in size from small depressions in the sand to
elaborate castles, have been identified (McKaye
1991). Within each class of bower shape, significant
quantitative variation in bower dimensions occurs.
Among bowers within a lek, height varies depend-
ing on the age of the bower and the activities of the
male. Some dimensions of the bower remain con-
stant, despite variation in height, strongly suggest-
ing a genetic basis to bower form. The diameter of
the breeding platform of the bowers of Copadichro-
mis conophorus appears to be species specific
(Stauffer et al. 1993). We demonstrated that three
closely related species in the Copadicliromis euci-
nostomus group had differently shaped bowers, and
we used these data to aid in the differentiation of
these species. Similarly, McKaye et al. (1993) stud-
ied five leks of Tramitichromis near Nankumba Pen-
insula in Lake Malawi and demonstrated significant
differences in bower shape among these leks. These
data are discussed in more detail in the section



238 STAUFFER ET AL

0.06

Brine Shrimp

Flake Food
BN

0.04 — /
/ ™
K .\ |l
™ LY / N
g 002 N ik N
° i & B A
® o ° - g 3
S ool o |
z
.0.02 —
N
o z
-0.04
012 -008 -004 -00 004 008 012

Sheared PC2

FIGURE 7.—A plot of the second and third sheared principal components based on eight head measures collected from
a split brood of P. c.f. zebra “red-top” fed two different diets.

the effects of diet on the phenotype of two New
World cichlids: a mouthbrooder, the redhump
eartheater Geophagus steindachneri (Eigenmann
and Hildebrand), and a substrate spawner, the pearl
eartheater Geophagus braziliensis (Quoy and Gai-
mand). The experimental design was similar to that
of Meyer’s (1987) and both species exhibited the
expected trend. Based on this study it would appear
that mouthbrooding may not greatly alter the phe-
notypic plasticity induced by diet in substrate-
spawning cichlids.

Similar studies have not been conducted on Old
World cichlids, but there have been some important
observations. Witte (1984) reported that wild-
caught (Lake Victoria) and domesticated Haplo-
chromis squamipinnis Trewavas had differently
shaped premaxillaries. The difference was attrib-
uted to the fact that those individuals kept in
aquaria dug in the sand with their mouths, thus
increasing the power of their bite over that of the
wild-caught ones, which did not exhibit this digging
behavior. In addition, Witte (1984) noted that the
change in premaxillary shape was not limited to
young fish, indicating that it was not strictly con-
trolled by some ontogenetic factor. A second im-
portant observation was reported by Greenwood
(1965) for Astatoreochromis alluadi Pellegrin. Indi-
viduals feeding on thick-shell snails had stronger

pharyngeal bones and larger molariform teeth than
did those individuals that ate snails with thinner
shells. In preliminary experiments conducted in our
laboratory, we used F, siblings derived from wild-
caught P. c.f. zebra “red top” and randomly divided
them into two dietary treatments: (1) brine shrimp
nauplii and Daphnia magna and (2) commercial
flake food and tubifex worms. After 18 weeks the
fish were sacrificed and morphometric measure-
ments were recorded. A sheared principal compo-
nents analysis, in which cheek depth, head depth.
and snout length accounted for most of the variabil-
ity, resulted in complete separation of the two
groups (Figure 7).

Clearly, approaches integrating morphological.
genetic, ecological, and ethological data are re-
quired for species-level description of these fishes.
In a study of five putative populations of Trami-
tichromis species in the vicinity of Nankumba Pen-
insula in Lake Malawi, McKaye et al. (1993) exam-
ined protein electromorphs of 24 enzyme loci and
compared these data with bower shape of each of
the five populations. No fixed differences were
found for any of the alleles. Frequency differences
indicated that the two populations found at Cape
Maclear were distinct from the populations from
Kanjedza Island, Mpandi Island, and Nkudzi Point.
The population inhabiting Nkudzi Bay, which is

o
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located between Kanjedza Island and Mpandi Is-
land was intermediate between these islands and
the populations at Cape Maclear. Shape analysis of
bower forms produced two major groupings, which
showed that the bowers from populations located at
Cape Maclear were distinct from those found at the
other three localities. A critical examination of the
lower pharyngeal bone and the gill rakers located
on the ceratobranchial showed that populations
from Nkudzi Bay, Mpandi Island. and Kanjedza
Island were Lethrinops c.f. parvidens, whereas those
located at Cape Maclear were Tramirichromis c.f.
linuris. Hence, the results suggesfcd by the morpho-
logical, genetic, and behavioral data were congru-
ent.

Another example of congruence among genetic.
morphological. and behavioral data is found in the
three species Copadichromis conophoros. C. cveli-
cos, and C. thinos. which were recently described by
Stauffer et al. (1993). For over a decade. extensive
research on the ecology and behavior of these sand-
dwelling fishes indicated that at least three popula-
tions, which fit the original description of Copadi-
chromis eucinostomus, constructed bowers with
three different population-specific shapes. The clus-
ters formed by plotting the principal component
analysis scores (see Humphries et al. 1981 and
Bookstein et al. 1985 for a discussion of shape
analysis) of the morphometric and meristic data for
Copadichromis conophorus and C. cyelicos did not
overlap. Copadichromis thinos, although intermedi-
ate, was significantly different (P < 0.05) from the
other two species. Shape analysis also confirmed
that bower shapes for the three species were signif-
icantly different (P < 0.05), although data from the
bowers of Copadichromis conophorus were interme-
diate. Subsequent to the description of these taxa.
mtDNA haplotype frequencies in Copadichromis
conophorus, C. cyclicos, C. thinos, and an unde-
scribed species of Copadichromis from Thumbi
West Island were examined (Table 1). Haplotype
frequencies were significantly different (P < 0.05)
among populations. Males on the small lek at
Thumbi East Island are nearly fixed for a single
mtDNA haplotype. These data confirm the genetic
uniqueness of Copadichromis conophorus. C. thinos.
and C. cyclicos, which had been inferred from mor-
phological evidence.

Conclusions

In sympatric situations behavior can provide di-
rect evidence for reproductive isolation or cohesion.
In both allopatric and sympatric circumstances. de-

TaBLE 1.—Distribution of mitochondrial DNA haplo-
types among four populations of Copadichromis once sus-
pected to be conspecific. All populations are from south-
ern Lake Malawi.

Mitochondrial DNA haplonvpes

Population A B G DE TG HI
Thumbi West Island 16 3 0 0 0 0 0 0 0
Cape Maclear 1 110 4 2 1L 0 0 O
Kanchedza [sland ] 0 4 1 0 0 2 0 0
Mazinzi Reef >3 0 2 1L 0 0 1 3

tectable behavioral differences may have initiated
the speciation process through assortative mating,
which may, in turn. lead to runaway sexual selec-
tion. Thus. behavioral data are extremely valuable
and. at least with some groups such as cichlids. are
essential and can (1) initially identify distinct taxa or
identifv novelties which prompt further investiga-
tion: (2) confirm or support genetic and morpho-
logical data needed to delimit taxa: and (3) provide
needed information to speculate on phylogenies.

It is our contention that if ESUs are recognized at
the population level. the population designated
should possess some heritable atypical trait. such as
an unusual behavior pattern. Perhaps an ESU can
be designated on a temporary basis because of an
unresolved taxonomic status. We are not proposing
that the ESU replace existing taxonomic categories
but that these units be given standard nomencla-
tural status when possible. so that they are formally
recognized by the scientific community. Such dis-
tinction provides the necessary framework to ini-
tiate and foster debate on the significance and re-
ality of such discrimination. We realize that species
definitions and concepts are difficult and sometimes
burdensome, but we urge investigators not to re-
gard these varied concepts as mutually exclusive.
We also conclude that behavioral data are essential
to delimit species.

We further propose that the ESU be defined in
geographical terms, so that areas of high diversity or
endemism can be designated as ESUs. Such a unit
may consist of crater lakes in Nicaragua or partic-
ular islands or shorelines in Lake Malawi. For ex-
ample. in the southeast arm of Lake Malawi more
than one-third and one-half of the species native to
the Maleri Islands and to Chinyankwazi and Chiny-
amwezi Islands, respectively, are endemic (Figure
8). Such a geographical approach to conservation
must permit the continued use of the lake by
Malawians, who derive about 70% of the animal
protein consumed from fish, and must also preserve
those areas that harbor high concentrations of ge-
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FIGURE 8.—A map of the southern region of Lake Malawi showing the total number of species of mbuna at a given
location and the number of those species that are endemic to the location.

netic diversity. As stated by Orville Freeman
(former U.S. Secretary of Agriculture), “We make a
potentially dangerous mistake when we assume that
we must choose between serving humanity or serv-
ing the environment. It must be a priority to bring
these goals into harmony. They need not and they
must not be mutually exclusive.”
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