Manual of Applied Spatial Ecology

W. David Walter
U.S. Geological Survey, Pennsylvania Cooperative Fish and
Wildlife Research Unit, Pennsylvania State University, University Park, PA 16802, USA

and

Justin W. Fischer
United States Department of Agriculture, Animal and Plant Health Inspection
Service, Wildlife Services, National Wildlife Research Center, 4101 LaPorte Avenue, Fort
Collins, CO 80521, USA

6 August 2014

Contents

Contents

List of Figures

Preface

Acknowledgments

1 Data Manipulation and Management

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10

Load R software and packages
Geographic coordinate systems L. L L
Projected coordinate systems L
Transformations between coordinate systems
Import and format datasets oL
Manipulate polygon data layer L 0oL
Manipulate raster data layer. L oo o
Creating a hexagonal polygon grid over a study area
Creating a square polygon grid over a study area
Creating buffers

2 Climate Data Interpolation

2.1
2.2
2.3
24
2.5
2.6

Incorporating background spatial layers
Accessing climate data
Cleaning raw climate data L o
Usingdatain R 0 o
Using data in ArcMap e
Importing dynamically downscaled global climate data

3 Movement Methods

3.1
3.2
3.3
3.4
3.5

Importing datasets from a web source,
Movement trajectories L e
Distance between locations L L o Lo
First Passage Time (FPT) s
Regular trajectories L Lo

4 Home Range Estimation

4.1
4.2
4.3
4.4
4.5

Kernel Density Estimation (KDE) with reference bandwidth selection (h
KDE with least-squares cross validation bandwidth selection (hyg.,) -
KDE with plug-in bandwidth selection (hplug-in)
Brownian Bridge Movement Models (BBMM)
Movement-based Kernel Density Estinlniation (MKDE)

ii

vii

viii

29
30
30
31
33
38
41

44
45
45
48
o1
o7

4.6 Dynamic Brownian Bridge Movement Model (dBBMM) 92

4.7 Characteristic Hull Polygons (CHP) 96
4.8 Local Convex Hull (LoCoH) 99
4.9 Minimum Convex Polygon (MCP) 106

5 Overlap Indices 109
5.1 Percent overlap L 110
5.2 Probability overlap L Lo 110
5.3 Bhattacharyya’s affinity o oo 110
5.4 Utilization distribution overlap index o0 111
5.5 Hellinger’s distance 111
5.6 Volume of intersection index L L o 112

6 Three-dimensional Analyses 113
6.1 Three-dimensional home range 113
6.2 Three-dimensional exploration of digital elevation models (DEMs) 118

7 Landscape Metrics 121
7.1 Landscape metrics for a single areao oo 121
7.2 Landscape metrics within polygons Lo 0. 122
7.3 Landscape Metrics within buffers 0oL, 124

8 Resource Selection 127
8.1 Preparing linear measures Lo 127
8.1.1 Formatting layers for package spatstat 129

8.1.2 Summarizing linear measures as covariates 132

8.2 Preparing additional covariates L oL 133
8.2.1 Manipulating raster layers for inclusion in modeling procedures 133

8.3 Selection ratios Lo 140
8.4 Resource selection functions L 141
8.4.1 Logistic regression e 141

9 Spatial Epidemiology in WinBUGS 144
9.1 Data preparationin R o 145
9.2 Raster manipulationin R oo o oo 149
9.3 Datasummaryin R 151
9.4 Data preparation of NDVI covariate 152
9.5 Data preparation for R2ZWinBUGS 155
9.6 Data preparation within ArcMap 160
9.6.1 Adjacency matrices with weights = 1. 161

9.6.2 Adjacency weights other than 1 162

9.6.3 Covariates L 163

9.7 Check model 164
9.8 Loaddata e 164
9.9 Compiling chains L L 165
9.10 Load initial values L L 166
9.11 Sample monitor tool Lo 166
9.12 Update tool L L 167
9.13 Further considerations L 167
10 Miscellaneous Code 169
10.1 Remove or search for duplicated GPS locations in a data frame 169

iii

10.2 Need to convert back to a matrix to be able to export the data or manipulate

thedata e 169
10.3 Remove quotations marks around values in results table or printout 170
10.4 Bin numeric variables into categories 0oL 170
10.5 Recode variables in Remdr o o o L 170
10.6 Jitter UTM coordinates before making SpatialPointsDatakrame 170

10.7 Remove extraneous locations or remove all data for a single animal by animal ID 171
10.8 Generate sequential numbers as ID’s for each location then add back to original

dataset e e e 171

10.9 Rename data by deleting a portion of the string 171
10.10 Rename levels of factor 171
10.11 Recode numeric values as factors into categories 172
10.12 Force a DBRB class output to a data frame 172
10.13 Subset GPS locations by a daterange L. 172
10.14 Drivers for rdgal input/ouput but run command for complete list if needed . . . 172
Literature Cited 173

iv

List

1.1
1.2
1.3

1.4
1.5

1.6
1.7
1.8

1.9
2.1

3.1
3.2

3.3
3.4

4.1

4.2
4.3

4.4

4.5
4.6
4.7
4.8
4.9
4.10

4.11
4.12
4.13

of Figures

American White Pelican with locations spanning 5 UTM zones 2
Turkey vulture locations only occurring in one UTM zone 3
How to find coordinates system of GIS layer in ArcCatalog or Table of Contents
in ArcMap L e 4
Study area projected into UTM Zone 12N with original WGS84 underneath . . . 6
Mule deer locations projected into UTM Zone 12N (red) with original locations
in WGS84 (black) 7
Overlay of mule deer locations with random locations generated in R 10
Imported raster dataset showing coastline and tributaries. 13
Imported Digital Elevation Model using adehabitat package showing coast-
line and tributaries. 13
Buffers around mule deer locations using the a) byid=FALSE (default) and
b) byid=TRUE for the gBuffer function using package rgeos. 27
Estimated probability of occupancy of snowshoe hare across the current
range in Pennsylvania, 2004. 41
Example of a trajectory created using adehabitatLT for a mule deer in
Colorado. 54
Plot of a First Passage Time for a mule deer in Colorado identifying mean
FPT by month. 55

Summaries of distance and time (dt) between relocations for mule deer D16. 58
Bursts of movements for mule deer D15 after creating segements based for
focal use areas. 62

Example of KDE with hplug-z’n smoothing parameter to estimate size of

home range for an American White Pelican. 71
Example of 95% BBMM home range for a Florida Panther. 75
Example of 95% KDE home range with hplug—in for a Florida Panther.. . . 76
Example of 95% KDE home range with href for a Florida Panther. 76
This figure shows how to summarize size of home range in ArcMap. 78
Home range of one panther using BBMM showing all contours. 79
Home range using BBMM for panther 110 with various time lags incorporated. 81
Locations of one vulture in UTM 17N. 83
Imported habitat layer in Albers Equal Area Conic Projection. 84
Imported habitat layer projected to UTM Zone 17N similar to vulture lo-

cations. e e 85
Overlay of Itraj on spixdf=habitat in UTM Zone 17N. 85
Imported raster dataset showing coastline and tributaries.. 86
Movement paths of two Black Vultures with a similar extent. 88

\%

4.14
4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

6.1

6.2

8.1

8.2

9.1
9.2
9.3
9.4
9.5
9.6

Red identifies ocean and tributaries not used by vultures. 89
Contours of home range for 2 black vultures estimated using the Movement-

based kernel density method (MKDE) 91
Contours of home range for a mule deer estimated using the dynamic Brow-
nian Bridge Movement Model (ABBMM). 97
Example of CHP home range for 2 Florida panther. 98
The LoCoH GUIL. 100
Example of 95% estimate of home range for a Florida Panther using LoCoH
with Fixed K = 1,000. 102
Example of 95% estimate of home range for a Florida Panther using LoCoH
with Fixed R = 1,000. 103
Example of 95% KDE estimate of home range for a Florida Panther using
LoCoH with Adaptive = 1,000. 104
Example of 95% KDE estimate of home range for a Florida Panther using
LoCoH with Adaptive = 10,000. 105
Example of 95% estimate of home range for mule deer using Minimum
Convex Polygon. 107
Example of 95% estimate of home range for mule deer using Minimum
Convex Polygon with relocations overlayed. 108

Example home range of a mule deer in 3D using KDE with a) hr’ef and b)
hplu g-in bandwidth selection. L 118
Example of a Digital Elevation Model in 3D using rasterVis package in R. . 120

Zooming in around mule deer locations using drawExtent in the raster pack-
agein R. . . o o 133
Selection ratios for Florida panther for 6 habitat types (1-6) using Manly’s
Selectivity Measure. Habitat type is on x-axis and selectivity measure is on

y-axis for a) all panthers and b) each panther. 141
Adjacency matrix created in ArcMap using the Adjacency Toolbox. 163
Compiling the model structure in WinBUGS. 164
Loading the data into WinBUGS. 165
Compiling the number of chains in WinBUGS. 165
Loading the initial values for each chain in WinBUGS. 166

Setting the sample monitor tool and initiating program to run in WinBUGS.167

vi

Preface

The purpose of this manual is to assist researchers on methods for data management and analysis
using the R environment or other software after data has been collected in the field. The impetus
behind this manual was from many years of frustration in trying to analyze data in R using
code and forgetting how it was done upon completion of a study. We wanted to find a way to
avoid needing to search computers for folders to find old R code then try to remember what we
did to the data to get the code to run properly. Over the years, advancements in data handling
and manipulation, GIS capabilities, and methods of estimators for home range, movements,
resource selection, and spatial epidemiology have occurred within the R environment. Program
R is free and used by researchers world-wide but R also provides a platform to create and display
spatial layers without the need for the variety of GUI software, free or otherwise. Furthermore,
analyzing spatial data in R enables statistical analysis of data without the errors that may arise
from bringing data from spreadsheet or GIS software to statistical programs.

We would would like to stress that this manual is not the authority on all topics presented
herein. Our goal was to create an online manual that could be easily followed by researchers,
biologists, or graduate students to analyze their data in R. Although the user would benefit from
general introductory knowledge of using R and ArcMap, most of the manual is for mid-level
users of R that need quidance beyond the basics of introductory R and GIS coureses. We also
provide numerous citations throughout each section should the user choose to learn the theory
or more details behind each topic. In addition, this manual provides a handy outline of course
materials for an Applied Spatial Ecology course that will surely expand or change as the field
evolves. As time permits and errors are brought to our attention, we plan to update and correct
problems so be sure to send any corrections or comments our way.

Any use of trade, firm, or product names is for descriptive purposes only and does not imply
endorsement by the U.S. Government.

Recommended citation:

Walter, W.D. and J.W. Fischer. Manual of Applied Spatial Ecology. Walter Applied Spatial
Ecology Lab, Pennsylvania State University, University Park. Access Date.
<http://ecosystems.psu.edu/research/labs/walter-lab>.

vii

Acknowledgments

Numerous colleagues have provide assistance with R packages they created or with code they
have provided in some other form. We would be remiss if we failed to thank these colleagues
for their hard work:

Sharon Baruch-Mordo, The Nature Conservancy, Fort Collins, CO 8052/ ; sbaruch-mordo@tnc.org
Simon Benhamou, Centre d’Ecologie Fonctionnelle et Evolutive, France

Clément Calenge, Data Analysis Support Unit, Directorate for Studies and Research, National
Office of Hunting and Wild Fauna, Saint Benoist - 78610 Auffargis, France

Mevin Hooten, Colorado Cooperative Fish and Wildlife Research Unit, 201 Wagar Bldg, Col-
orado State University, Fort Collins, CO 8052; Mevin.Hooten@colostate.edu

Bill Kanapaux, Pennsylvania Cooperative Fish and Wildlife Research Unit, 406 Forest Resources
Bldg., Pennyslvania State University, University Park, PA 16802; wik15Q@Qpsu.edu

Bart Kranstauber, Maz Planck Institute for Ornithology, Eberhard-Gwinner-Str., 82819 Seewiesen;
bart.kranstauber@uni-konstanz.de

Ryan Nielsen, West Inc.,415 W. 17th St. Suite 200, Cheyenne, WY 82001; rnielson@west-
inc.com

Glen Sargeant, Northern Prairie Wildlife Research Center, Jamestown, North Dakota;
glen__sargeant@usgs.gov

Peter Singleton, USDA Forest Service, Pacific Northwest Research Station in Wenatchee, WA;
singlep@u.washington.edu

Marcé Smolla, Maz Planck Institute for Ornithology, Dept. Migration and Immuno-ecology,
Am Obstberg 1, 78315 Radolfzell, Germany; msmolla@orn.mpg.de

Tyler Wagner, US Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research
Unit, 402 Forest Resources Bldg., Pennyslvania State University, University Park, PA 16802;
twagner@psu.edu

viii

Chapter 1

Data Manipulation and Management

Contents
1.1 Load R software and packages « ¢« v v v v v v v vt b bt 1
1.2 Geographic coordinate systems 0 0o 2
1.3 Projected coordinate systems00 000 o oo, 2
1.4 Transformations between coordinate systems. 3
1.5 Import and format datasets ot i ittt 7
1.6 Manipulate polygon datalayer 8
1.7 Manipulate raster datalayer. o 0 00t d e e 11
1.8 Creating a hexagonal polygon grid over a study area 17
1.9 Creating a square polygon grid over astudy area 21
1.10 Creating buffers i i i i i i i i i e e e e e e e e e e e e e e e 24
Figures
1.1 American White Pelican with locations spanning 5 UTM zones 2
1.2 Turkey vulture locations only occurring in one UTM zone 3
1.3 How to find coordinates system of GIS layer in ArcCatalog or Table of Contents in
ArcMap . . . e e e 4
1.4 Study area projected into UTM Zone 12N with original WGS84 underneath 6
1.5 Mule deer locations projected into UTM Zone 12N (red) with original locations in
WGS84 (black) . . . oo o 7
1.6 Overlay of mule deer locations with random locations generated in R . . 10
1.7 Imported raster dataset showing coastline and tributaries. 13
1.8 Imported Digital Elevation Model using adehabitat package showing
coastline and tributaries. oo 13
1.9 Buffers around mule deer locations using the a) byid=FALSE (default)
and b) byid=TRUE for the gBuffer function using package rgeos. 27

1.1 Load R software and packages

1. Install R
To assure proper functioning of downloaded packages, install R to a subdirectory for
which you have complete read/write access. We used subdirectory
c:\Program Files\R. Path statements that follow reflect this location.

2. Some quick code to set CRAN mirror and load some packages

install.packages(c("gpclib","ade4","adehabitat","adehabitatHR","chron","raster",
"rgdal", "shapefiles"), dependencies=TRUE,
repos="http://lib.stat.cmu.edu/R/CRAN/")

#Load needed libraries
library(adehabitatHR) #package needed for home range estimation
1

http://www.r-project.org/

library(adehabitat) #package needed import.asc function

library(sp) #package needed to import and manipulate raster datasets
library(rgdal) #package needed to import ascii files into R
library(raster) #package needed to manipulate raster files

1.2 Geographic coordinate systems

Geographic Coordinate Systems uses a three-dimensional spherical surface to define locations
on the earth. Points on the earth’s surface are referenced by longitude (north-south vertical
lines) and latitude (east-west horizontal lines) measured in degrees (or in grads) as angles
from the earth’s center. Although longitude and latitude can locate an exact position on the
earth’s surface, they are not uniform units of measure. For example, latitude gets gradually
smaller as one leaves the equator and approaches the poles.

Datums define the position of the spheroid relative to the center of the earth by
defining the origin and orientation of latitude and longitude lines. Because local datums are
aligned with a particular area of the earth’s surface, a datum for Europe (ED 1950) can’t be
used to reference locations in North America (NAD) and vice versa. There are numerous
datums and dates of datums primarily due to the improvements of satellite data with WGS
1984 serving as the framework for locational measurements worldwide.

1.3 Projected coordinate systems

Projected Coordinate Systems are defined on a flat, two-dimensional surface with different
projections causing different types of distortions. Various projected coordinate systems have
been developed for different regions that provides a common framework to perform spatial
analysis. Choosing the projection for data analysis requires knowledge of the spatial
distribution and extent of GPS points (see for example Fig. 1.1; Walter et al. 2011).

1300 Kilomebrs
|

Figure 1.1: American White Pelican with locations spanning 5 UTM zones

Use of the geographic coordinate system (i.e. latitude, longitude) is recommended in
cases of long distance movements and is often tzhe default geographic collection method for

GPS collar data. However, some home range software (e.g. BBMM package in R) requires
input coordinate data to be in meters so Albers Equal Area Conic or Universal Transverse
Mercator could be used (Fig. 1.2).

Figure 1.2: Turkey vulture locations only occurring in one UTM zone

1.4 Transformations between coordinate systems

Transformations in ArcMap can be the most troublesome component of spatial analysis that is
often overlooked as the reason for errors in data analysis. We will briefly go into the 2 most
common problems requiring our assistance from collaborators and potential solutions.

1. What coordiate system were the data collected in?

It seems that every GPS collar, handheld GPS unit, GIS landcover layer, etc. has been
created using a different coordinate system and it’s not the one you have at your study
site. Or perhaps NAD 1927 was used and you decided to be modern and want to use
NAD 1983. Regardless, the coordinate systems must match even though ArcMap often
overlays them with "on the fly projections”. The "on the fly" component of ArcMap is
great for visualization but not for spatial ecologists that need data analysis. We often
can determine which coordinate system the data were created in using the metadata to
define a coordinate system or project the data into a coordinate system for data analysis.

2. A Toolbox in ArcMap may not extract data or clip data properly

As mentioned previously, data collected with a GPS collar or handheld GPS may not be
in the same geographic or projected coordinate system as the GIS layers you download
or receive from collaborators (i.e., Digital Elevation Data, National Land Cover Data;
Fig. 1.3). As you attempt to use a Toolbox function, such as clipping National Land
Cover Data within the extent of your GPS locations, an error may result.

We will now explore some transformations of data in R to help understand what
Projections and Transformations are all about.SThe dataset that follows is for a project in

The Spatial Reference
isin the properties of

the layer
Raster Dataset Properties e &Iﬁ—hj
General
Property m <
= Extent
Top
Left
Right i
Bottom
=1 Spatial Reference MaD_1983_albers _ Edit... ’
Linear Unit Meter (1.000000) |
Angular Unit Degree {0.017453292519943295)
False_Easting a |
E False_Morthing o] |
Central_Meridian -95 | 4 I
Standard_Parallel_1 29,5 | 3
Standard_Parallel_2 45.5 N
i Latitude_OF Origin = | In_ArcCatalog, right
i Datum D_Morth_American_1983 |4 click on layer and
= Statistics _ Options | select properties
=l northeast
Build Parameters skipped columns: 1, rows: 1, ignored value(s): e
[OK] | Cancel] Apphy

Figure 1.3: How to find coordinates system of GIS layer in ArcCatalog or Table of Contents in
ArcMap

Colorado with mule deer equipped with GPS collars that collected locations every 3 hours.
The purpose of the study was to determine mule deer use of agricultural crops, sunflowers in
this case, in response to years of damage complaints from farmers. We will use this subset of
dataset in later exercises as well.

1. Load the proper library "rgdal" to read in a shapefile created in ArcMap

library(rgdal)
study.states<-readOGR(dsn=".",layer="MDcounties")

#0GR data source with driver: ESRI Shapefile
#Source: ".", layer: "MDcounties"

#with 38 features and 8 fields

#Feature type: wkbPolygon with 2 dimensions

plot(study.states, col="grey")

#Let’s zoom into the region we have locations instead of county level
study.zoom<-read0OGR(dsn=".",layer="MDzoom")

OGR data source with driver: ESRI Shapefile
Source: ".", layer: "MDzoom"
with 1 features and 1 fields
Feature type: wkbPolygon with 2 dimensions

plot(study.zoom, col="grey")

2. Import the csv file that contains all the mule deer locations by ID

muleys <-read.csv("C:\\Walter\\WalterSpatialEcologyLab\\
SpatialEcologyCourse\\Chapter3\\Distance\\DCnuleysedited.csv", header=T)

str(muleys)
4

. Create a spatial data frame of raw mule deer locations with projection defined similar to
study site shapefile (i.e., WGS84)

coords<-data.frame(x = muleys$Long, y = muleys$Lat)
crs<-"+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs +towgs84=0,0,0"
coords

plot(coords)

. Remove outlier locations

newmuleys <-subset(muleys, muleys$X > 599000 & muleys$X < 705000 &
muleys$Y > 4167000)

#reassign '"newmuleys" as "muleys" dataset

muleys <- newmuleys

. Create a new spatial data frame of mule deer locations with outliers removed and
projection defined similar to study site shapefile (i.e., WGS84)

coords<-data.frame(x = muleys$long, y = muleys$Lat)
crs<-"+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs +towgs84=0,0,0"
coords

plot (coords)

. Create a spatial points data frame of mule deer locations projection defined similar to
study site shapefile (i.e., WGS84)

deer.spdf <- SpatialPointsDataFrame(coords= coords, data = muleys,
proj4string = CRS(crs))

deer.spdf[1:5,]

class(deer.spdf)

proj4string(deer.spdf)

points(deer.spdf)

points(deer.spdf, col="yellow")

. Now let’s project both the mule deer locations and study site shapefile to NAD83 UTM
Zone 12 (Fig. 1.4, 1.5)

new.crs <-CRS("+proj=utm +zone=12 +datum=WGS84")
MDzoomUTM12 <-spTransform(study.zoom, CRS=new.crs)
par (new=TRUE)

plot (MDzoomUTM12, col="bisque")

class(MDzoomUTM12)

proj4string (MDzoomUTM12)

summary (MDzoomUTM12)

#projection for mule deer locations

deer.crs <-CRS("+proj=utm +zone=12 +datum=WGS84")
deerUTM12 <-spTransform(deer.spdf, CRS=deer.crs)
points(deerUTM12, col="red")

class(deerUTM12)

proj4string(deerUTM12)

deerUTM12[1:5,]

#See new projected coordinates in UTM 12N for the first 5 locatiomns
coordinates (deerUTM12) [1:5,]

X y

Figure 1.4: Study area projected into UTM Zone 12N with original WGS84 underneath

[1,] 677825.2 4192832
[2,] 677853.8 4192787
[3,] 677736.3 4192728
[4,] 677595.9 4192398
[5,] 677666.2 4192362

#plot coordinates in Lat Long over coordinates in UTM 12N
plot(coords)

par (new=TRUE)

plot(deerUTM12, col="red")

windows ()

plot(study.zoom)

par (new=TRUE)
plot(deer.spdf, col="red")

windows ()

plot (MDzoomUTM12,col="bisque")
par (new=TRUE)

plot(deerUTM12, col="red")

#another method to project data
require(rgdal)

make_EPSG()

nad83 <-EPSG[grep("NAD83",EPSG$note),]

nad83[grep("UTM zone 12N", nad83$note),]
6

Figure 1.5: Mule deer locations projected into UTM Zone 12N (red) with original locations in
WGS84 (black)

1.5 Import and format datasets

1. Select File-Change dir....
Select folder that you are working in that includes your dataset

2. Determine the name of your file ("temp" in our case here)
We can then enter the path with this name to bring our dataset into R

temp <- read.csv("C:\\Walter\WalterSpatialEcologyLab\\SpatialEcologyCourse\\
Chapter1\\TimeLagCode\\Y2005_UTM_date.csv", header=T)

3. We can also just open a new R document and save the workspace in the TimeLagCode
folder so that the working directory can be set automatically whenever you open the R
document from this folder using the code

temp <-read.csv("Y2005_UTM_date.csv", header=T)

4. Tt is often necessary to determine the time lag between successive locations within your
dataset
modify time to include seconds
temp$time <- paste(as.character (temp$LMT_TIME),"00",sep=":")
convert to chron date
temp$date_time <- chron(as.character (temp$LMT_DATE),
temp$time,format=c(dates="m/d/y",times="h:m:s"))
calc diff in minutes
timediff <- diff (temp$date_time)*24*60
remove first entry without any difference

temp <- temp[-1,] .

1.6

assign timediff column

temp$timediff <- as.numeric(timediff)

The above code will result in a dataset that includes "timediff" that is the time between
successive GPS points

Location date_time difference
1

2 (07/13/05 10:00:00) 7
3 (07/13/05 10:30:00) 30
4 (07/13/05 11:00:00) 30
5 (07/13/05 11:30:00) 30
6 (07/13/05 12:00:00) 30
7 (07/13/05 12:30:00) 30
8 (07/13/05 13:00:00) 30
9 (07/13/05 13:30:00) 30
10 (07/13/05 14:00:00) 30
11 (07/13/05 15:00:00) 60
12 (07/13/05 15:30:00) 30
13 (07/13/05 16:00:00) 30
14 (07/13/05 16:31:00) 31
15 (07/13/05 17:01:00) 30
16 (07/13/05 17:30:00) 29

. We can then either export this file as an excel file for use in other programs

or rename the output it to use it in R in subsequent analysis

write.table(temp,"C:\\Walter\\WalterSpatialEcologyLab\\SpatialEcologyCourse\\
Chapter1\\TimeLagCode\TimeDiffdata.csv", row.names=TRUE, sep=" ",
col.names=TRUE, quote=TRUE, na = "NA")

. The output data will be in the TimeLagCode folder in the .csv table and will

include more than we need. We can manipulate the data further in R or use "text to
columns" in Excel to get the time between successive locations that we were aiming for
here.

Manipulate polygon data layer

. First we need to get data sets into R

library(rgdal)

library(maptools)

library(foreign)

Example using rgdal, rgdal automatically imports the projection file
###change dsn to the directory where your example files are stored

soils<-readOGR(dsn="C:\\Walter\\WalterSpatialEcologyLab\\SpatialEcologyCourse\\

Chapter1\\Soil_SHP",layer="Soil_Properties")
soils@proj4string ###get projection
plot(soils)
names (soils) ##t#get attribute data

#Rename ArcMap category headings to something more familiar
soils$Clay <- soils$SdvOutpu_1
s0ils$pH <- so0ils$SdvOutpu_2

s0ils$CEC <- soils$SdvOutpu_3

#Shapefiles contain several slots which can be called with the "@" symbol
#or slot(object, "data")

soils@data #= a data frame with n observations associated with X covariates,
soils@polygons #=the number of polygons that the shapefile consists of
soils@plotOrder #= the order of the polygons

s0ils@bbox #= boundary box

soils@proj4string #= projection

#Within the slot

soils@polygons [[1]] ###will bring up the first polygon

soils@polygons [[1]]@area ###will bring up the area for the first polygon
soils@polygons[[1]]1@ID ##will retrieve the ID of the first polygon
soils@polygons[[1]]@plotOrder ##will retrieve the order of the first polygon

. Select portions of the data that fit some set criteria

##Highlights the areas that Percent Clay polygons are over 30%
plot(soils, col=grey(l-soils$Clay > 30))

plot(soils)

high.clay<- soils[s0ils$Clay>30,]

plot(high.clay, border="red", add=TRUE)

##Highlights the areas that Cation Exchange Capacity is greater than 14
high.CEC<- soils[soils$CEC>14,]
plot(high.CEC, border="green", add=TRUE)

##Highlights the areas that soil pH is greater than 8
high.pH <- soils[soils$pH>8,]
plot(high.pH, border="yellow", add=TRUE)

. Bring in locations of harvested mule deer

#Import mule deer locations from harvested animals tested for CWD

mule <-read.csv("MDclip.csv", header=T)

str(mule)

coords<-data.frame(x = mule$x, y = mule$y)

crs<-"+proj=utm +zone=13 +datum=WGS84 +no_defs +towgs84=0,0,0"
coords

plot(coords, col="blue")
par (new=TRUE)

. Let’s generate random points with the extent of the soil layer

#Sampling points in a Spatial Object###type="regular" will give a regular grid
samples<-spsample(soils, n=1000, type="random")
samples@projé4string

#Plot them to see if it worked or to create output figures
plot(soils, col="wheat")
points(coords, col="blue")

points(samples, col="red")
. Creates a SpatialPoints object from the locations coordinates

samples@bbox <- soils@bbox
samples@proj4string <- soils@proj4string

. Extracts and tallies Clay soil types for random samples and mule deer locations:

#Match points with soil polygons they occur in
soils.idx<- over(samples,soils)

locs <- SpatialPoints(coords)

locs@projé4string <- soils@projé4string
soils.locs<- over(locs, soils)

#Tally clay soil types for random samples:
obs.tbl <- table(soils.idx$Clay[soils.idx$Clay])
obs.tbl

#Also tally soil types for each mule deer sampled
obs.tbl2 <- table(soils.locs$Clay[soils.locs$Clay])
obs.tbl2

. Convert the counts to proportions:

obs <- obs.tbl/sum(obs.tbl)
obs

obs2 <- obs.tbl2/sum(obs.tbl2)
obs2

4500000 4520000 4540000
| | |

4480000
|

4460000
|

T T T T T
420000 440000 460000 480000 500000

X

Figure 1.6: Overlay of mule deer locations with random locations generated in R

10

1.7 Manipulate raster data layer

1. First we need to load packages to work with raster datasets

install.packages(c("adehabitatHR", "maptools","raster", "rgdal"))
library(adehabitat)

library(raster)

library(rgdal)

library(maptools)

2. Begin by setting your working directory and loading needed packages

Open workspace by double clicking that will also serve to set that folder
as the working directory. All of the raster layers we are going to use will
be located here.

3. Now open the script in that folder and run code directly from the script. Create an Ascii
file from your raster grid in ArcMap 10.X

ArcToolbox - Conversion Tools - From Raster - Raster to Ascii

Saved in folder "C:\\Walter\\WalterSpatialEcologyLab\\SpatialEcologyCourse
Chapterl\\RasterLayers

4. If you have troubles getting a raster to Ascii in ArcMap to actually show up as an Ascii
file there is good reason. We need to rename the text file by replacing ".txt" with ".asc"
in Windows Explorer. ArcMap will not save as an ".asc" file and I have no idea why!

5. Here is some code to import Ascii files (i.e., rasters) from ArcMap into R using one of
several packages. Ascii files can be categorical (Vegetation/Habitat categories) or
numeric (DEMs).

#Import raster as text using the "raster" package

library(rgdal)

library(raster)

r <-raster("C:\\Walter\\WalterSpatialEcologyLab\\SpatialEcologyCourse\\
Chapteri\\RasterLayers\\polyascii2.txt")

plot(r)

##0r import raster as an Ascii files (factor) using "adehabitat" package
##for filel, file2, and file3 in the 3 sections of code below:

Path of the file to be imported

filel <- paste("C:\\Walter\\WalterSpatialEcologyLab\\SpatialEcologyCourse\\
Chapteri\\RasterLayers\\polyextract2.asc", sep = "\\")

levelfile <- paste("C:\\Walter\\WalterSpatialEcologyLab\\SpatialEcologyCourse\\
Chapterl\\RasterLayers\\TableExtract.txt", sep = "\\")

asp <- import.asc(filel, lev = levelfile, type = "factor")

image (asp)

asp

str(asp)

#Now let’s look at the vegetation categories of the file
ta <- table(as.vector(asp))
names (ta) <- levels(asp) [as.numeric(names(ta))]

11

ta

file2 <- paste("C:\\Walter\\WalterSpatialEcologyLab\\SpatialEcologyCourse\\
Chapteri\\RasterLayers\\polyclip.asc", sep = "\\")

levelfile2 <- paste("C:\\Walter\\WalterSpatialEcologyLab\\SpatialEcologyCourse\\
Chapterl\\RasterLayers\\TableClip.txt", sep = "\\")

asp2 <- import.asc(file2, lev = levelfile2, type = "factor")

image (asp2)

asp2

str(asp2)

#Shows 7 vegetation categories

#Now let’s look at the vegetation categories of the file
ta2 <- table(as.vector(asp2))

names (ta2) <- levels(asp2) [as.numeric(names(ta2))]

ta2

. R won’t recognize double digit veg categories with this method so reclassify in ArcMap
then import raster as an Ascii files (factor) using:

file3 <- paste(polyascii2.asc")

levelfile3 <- paste("TableCode.txt")

asp3 <- import.asc(file3, lev = levelfile3, type = "factor")
image (asp3)

asp3

str(asp3)

NOTE: "Levelfile" refers to a text file created from exporting the raster
value attribute table from ArcMap by opening in table of contents and
exporting as a text file and then edited to look like this:

"VALUE", "COUNT", "VEGCLASS"

1,464368,DEVELOPED

2,186853,FOREST

3,185059, SHRUB

4,509415,GRASS

5,341023,CROP

6,251492,WET

7,350491,NON

#Using "asp" results in the following:
Raster map of class "asc": Cell size: 30 Number of rows: 3245
Number of columns: 3353 Type: factor

#Now let’s look at the vegetation categories of the file
ta3 <- table(as.vector(asp3))

names (ta3) <- levels(asp3) [as.numeric(names(ta3))]

ta3

. Or import raster as an Ascii files (numeric like a DEM) using:

fileElev <- paste("C:\\Walter\\WalterSpatialEcologyLab\\SpatialEcologyCourse\\
Chapteri\\RasterLayers\\InsertDEMfile name here.asc", sep = "\\"))
elev <- import.asc(fileElev)

vy
1160000 1180000
I I

1140000
|

1120000
|

T T T T
1380000 1400000 1420000 1440000 1460000

XX

Figure 1.7: Imported raster dataset showing coastline and tributaries.

image (elev)
plot(elev, col=terrain.colors(10))

3620000 3640000

¥
3600000

3580000
\

3560000
\

T T T T T T
500000 520000 540000 560000 580000 500000

KX

Figure 1.8: Imported Digital Elevation Model using adehabitat package showing coastline
and tributaries.

8. We can also use the "rgdal" package to import an ascii grid as a Spatial Grid Data Frame

habitat <- readGDAL("polyascii2.asc")

projé4string(habitat) <-CRS("+proj=aea +lat_1=29.5 +lat_2=45.5 +lat_0=23
+lon_0=-96 +x_0=0 +y_0=0 +datum=NAD83 +units=m +no_defs +ellps=GRS80
+towgs84=0,0,0")

image (habitat)

str(habitat)

9. Now let’s add some shapefiles to our raster

10.

11.

#Load county shapefile
county<-readOGR(dsn=".",layer="BeaufortCoAlbers")
projéstring(county)

spplot (county)

polys <- as(county, "SpatialPolygons")
plot(polys,add=T,1lwd=2)

polys

text (coordinates(polys), labels="Beaufort")
proj4string(polys)

#Load airport runway shapefile
run<-read0OGR(dsn=".",layer="RunwayAlbers")
proj4string(run)

spplot (run)

polys2 <- as(run, "SpatialPolygons")
plot(polys2,add=T,1lwd=2)

polys2

proj4string(polys2)

#Load aircraft flight pattern shapefile
path<-readOGR(dsn=".",layer="FlightImage")
proj4string(path)

spplot (path)

polys3 <- as(path, "SpatialLines")
plot(polys3,add=T,1ty="32", col="blue")
polys3

proj4string(polys3)

#Load roads shapefile for Beaufort County
road<-read0OGR(dsn=".",layer="CountyRoadAlbers")
proj4string(road)

#spplot (road)

polys4 <- as(road, "SpatialLines")
plot(polys4,add=T,1lty="22", col="green")
polysé

proj4string(polys4)

Plot out all the shapefiles overlayed on each other with and without the raster.

plot(county)

plot(road, add=T)

plot(run, col="red",add=T)
plot(path, col="blue",add=T)

Clip the raster within the county polygon for a zoomed in view then plot

#Clip using the raster imported with "raster" package
clip <~ crop(r, polys)
plot(clip)
plot(polys,add=T,1lwd=2)
plot(polys2,add=T,1lwd=2, col="red")
plot(polys3,add=T,1ty="62", col="blue")
plot(polys4,add=T,1ty="22", col="green")

14

12. Let’s reclassify layer to get fewer vegetation categories to make raster easier to work
with.

#Load vegetation layer

veg <-raster("C:\\Walter\\WalterSpatialEcologyLab\\SpatialEcologyCourse\\
Chapteri\\RasterLayers\\polydouble.txt")

plot(veg)

veg

Reclassify the values into 7 groups with all values between O and 20 equal

1, 21 to 40 equal 2, etc.

m <- c(0, 19, 1, 20, 39, 2, 40, 50, 3, 51,68, 4, 69, 79, 5, 80, 88, 6, 89, 99, 7)
rclmat <- matrix(m, ncol=3, byrow=TRUE)

rc <- reclassify(veg, rclmat)

plot(rc)

rc

#Now, let’s remove water that is coded 11 and No Data that is coded as 127

m <- c(0, 19, NA, 20, 39, 1, 40, 50, 2, 51,68, 3, 69,79, 4, 80, 88, 5, 89, 99, 6,
100, 150, NA)

rclmatl <- matrix(m, ncol=3, byrow=TRUE)

rcl <- reclassify(veg, rclmatl)

plot(rcl)

rcl

13. We can load some vulture locations to extract landcover that each location occurs in
that will be considered "used" habitat in resource selection analysis.

#Import bird 49 locations to R

bv49 <-read.csv("C:\\Walter\\WalterSpatialEcologyLab\\SpatialEcologyCourse\\
Chapterl\\RasterLayers\\Bird49.csv", header=T)

str (bv49)#How many bird locations?

#Make a spatial data frame of locations and convert to Albers

coords<-data.frame(x = bv49$x, y = bv493y)

crs<-"+proj=utm +zone=17N +ellps=WGS84"

coords

bvspdf <- SpatialPointsDataFrame(coords= coords, data = bv49,
proj4string = CRS(crs))

str (bvspdf)

bvspdf [1:5,]

points(bvspdf, col="red")

bv49Albers <-spTransform(bvspdf, CRS("+proj=aea +lat_1=29.5 +lat_2=45.5
+lat_0=23 +lon_0=-96 +x_0=0 +y_0=0 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0
+units=m +no_defs"))

class(bv49Albers)

proj4string(bv49Albers)

bv49Albers[1:5,]

points(bv49Albers, col="red")

#Determine which of those points lie within a cell that contains data by using
the extract function. The extract function will extract covariate information
from the raster at a particular point.

veg.survey<-extract(veg, bv49Albers)

14.

15.

veg.survey
veg.survey<-subset (bv49Albers, !is.na(veg.survey))
plot(veg.survey, col="black", add=T)

We can also create some random points within the extent of the area to be considered as
"available" habitat.

#First we need to create a grid across the study site with sample points
Sample.points<-expand.grid(seq(veg@extent@xmin, veg@extent@xmax, by=1000),

weight = seq(veg@extent@ymin, veg@extent@ymax, by=1000))
points(Sample.points, bg="red", cex=.5,col="red")

#Now create some random points using the minimum and maximum coordinates of
the raster to determine the range of points from which to select x and y

x.pts<-sample(seq(veg@extent@xmin, veg@extent@xmax, by=10),1000) ##generate
#x coordinates for random points
y.pts<-sample(seq(veg@extent@ymin, veg@extent@ymax, by=10),1000)

#Now create a spatial points file from the randomly generated points

coords2<-data.frame(x = x.pts, y = y.pts)

crs2<-"+proj=aea +lat_1=29.5 +lat_2=45.5 +lat_0=23 +lon_0=-96 +x_0=0 +y_0=0
+ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs"

coords?2

points(coords2, bg="red", cex=.5,col="blue")

#Determine which of those points lie within a cell that contains data by using
the extract function. The extract function will extract covariate information
from the raster at a particular point.

veg.sample<-extract(veg, sample.pts)

veg.sample

veg.sample<-subset (sample.pts, !is.na(veg.sample))

str(veg.sample)

points(veg.sample, col="green")

We can also do the same using the clipped vegetation raster to be more in line with
vulture locations or using the reclassified vegetation categories. For each locations, we
can determine if a locations lies within a cell that contains data by using the extract
function and this will extract covariate information from the raster at a each location.

clip.survey<-extract(clip, bv49Albers)

clip.survey
clip.survey<-subset (bv49Albers, !is.na(clip.survey))
plot(clip.survey, col="black", add=T)

#Create a regular grid and do the same thing
Sample.points2<-expand.grid(seq(clip@extent@xmin, clip@extent@xmax, by=1500),
weight = seq(clip@extent@ymin, clip@extent@ymax, by=1500))
points(Sample.points2, bg="red", cex=.5,col="red")

#Create random points using the minimum and maximum coordinates of the raster
x.pts2<-sample(seq(clip@extent@xmin, clip@extent@xmax, by=10),500)
y.pts2<-sample(seq(clip@extent@ymin, clip@extent@ymax, by=10),500)

16

#Now create a spatial points file from the randomly generated points
coords3<-data.frame(x = x.pts2, y = y.pts2)

crs2<-"+proj=aea +lat_1=29.5 +lat_2=45.5 +lat_0=23 +lon_0=-96 +x_0=0 +y_0=0
+ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs"

coords3

points(coords3, bg="red", cex=.5,col="blue")

#Determine which of those points lie within a cell that contains data by using
the extract function.

str(coords3)#Note number of locations

clip.sample<-extract(clip, coords3)

clip.sample

clip.sample<-subset(coords3, !is.na(clip.sample))

str(clip.sample)#Again note number of locations after subset function

points(clip.sample, cex=.5, col="red")

points (bv49Albers)

1.8 Creating a hexagonal polygon grid over a study area

Numerous research objectives require the need for creating a grid system of equal size over a
study site such as studies on resource selection and disease epidemiology. Grid systems
overlayed on a study site typically are shapefiles that can either be created and imported from
GIS software or created in R. Considering we have already learned how to import shapefiles,
we will explore how to create grids in R for this section. Grids can be of any size and shape
but should be based on something biologically meaningful to the animal or system you are
studying. For example, disease epidemiology studies often base the size of the grid cell on the
dailiy movement distance or home range of the study animal if that data is known
(Farnsworth et al. 2006, Rees et al. 2011).

1. Of course we need to load the appropriate packages

library(sp)
library(lattice)
library(rgdal)
library(rgeos)
library(raster)

. Also need to import several shapefiles for mule deer from Section 1.3

study.counties<-readOGR(dsn=".",layer="MDcounties")
str(study.counties) #Identifies 5 slots for the shapefile (data, polygons, order,
bbox, and proj4string)

class(study.counties)#Shows class and package used

proj4string(study.counties) #Shows projection information

plot(study.counties)#plots study sites on map

study.counties@data$StateCO #Displays labels for counties in plot

#Labels each county with @plotOrder of each polygon (i.e., county)

text (coordinates(study.counties), labels=sapply(slot(study.counties, "polygons"),
function(i) slot(i, "ID")), cef;O.S)

#NOTE: This can be any column or label within your shapefile

muleys <-read.csv("DCmuleysedited.csv", header=T)
str (muleys)

#Remove outlier locations

newmuleys <-subset(muleys, muleys$X > 599000 & muleys$X < 705000 &
muleys$Y > 4167000)

muleys <- newmuleys

. Identify the columns with coordinates then make a spatial data frame of locations after
removing outliers

coords<-data.frame(x = muleys$long, y = muleys$Lat)

crs<-"+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"

coords

deer.spdf <- SpatialPointsDataFrame(coords= coords, data = muleys,
proj4string = CRS(crs))

deer.spdf[1:5,]

class(deer.spdf)

proj4string(deer.spdf)

points(deer.spdf,col="red")

. Rename labels by county name otherwise plot order would be used because duplicate
counties within each state (i.e., CO, UT) occured in original shapefile from ArcMap

row.names (study.counties)<-as.character(study.counties$StateC0)

str(study.counties@polygons[3], max.level=3)

names.polygons<-sapply(study.counties@polygons, function(x) slot(x,"ID"))

#Now add labels of State and County to Map

text (coordinates(study.counties), labels=sapply(slot(study.counties, "polygons"),
function(i) slot(i, "ID")), cex=0.3)

. Now lets extract counties within the extent of the mule deer locations

int <- gIntersection(study.counties,deer.spdf)#requires rgeos library

clipped <- study.counties[int,]

MDclip <- as(clipped, "SpatialPolygons")

plot (MDclip,pch=16)

#Now add labels of State and County to Map

text(coordinates(MDclip), labels=sapply(slot(MDclip, "polygons"),
function(i) slot(i, "ID")), cex=0.8)

. We also can create a hexagonal grid across the study site

HexPts <-spsample(MDclip,type="hexagonal", n=1000, offset=c(0,0))
HexPols <- HexPoints2SpatialPolygons (HexPts)

proj4string(HexPols) <- CRS(crs)

plot (HexPols, add=T)

. Let’s create this hexagonal grid across our study site by zooming into deer locations
from Section 1.3.

#Import the study site zoomed in shapefile
study.zoom<-read0OGR(dsn=".",layer="MDzoom")
18

10.

plot(study.zoom,pch=16)
points(deer.spdf,col="red")

#Create new hexagonal grid

HexPts2 <-spsample(study.zoom,type="hexagonal", n=500, offset=c(0,0))
HexPols2 <- HexPoints2SpatialPolygons (HexPts2)

proj4string(HexPols2) <- CRS(crs)

plot (HexPols2, add=T)

#Now add labels to each hexagon for unique ID

text (coordinates(HexPols2), labels=sapply(slot(HexPols2, "polygons"),
function(i) slot(i, "ID")), cex=0.3)

. We can intersect the mule deer locations with the polygon shapefile (i.e., county) they

occured in if needed

o = over(deer.spdf,study.counties) #By county locations occurs in
new = cbind(deer.spdf@data, o)

head (o)

head(deer.spdf)

head (new)

#Used to rename labels by hexagonal grid ID only for visualization only!
row.names (HexPols2)<-as.character (HexPols2@plotOrder)

str (HexPols2@plotOrder[3], max.level=3)

names.hex<-sapply (HexPols2@polygons, function(x) slot(x,"ID"))

. As an aside, let’s explore how to assign the area a location occurs in by intersecting

points within the polygon shapefile.

02 = overlay(deer.spdf,HexPols2)
02

new2 = cbind(deer.spdf@data,o02)
head (new2)

new2

deer.spdf@datal1:10,]

HexPols2

#Now plot with new grid IDs

plot(study.zoom,pch=16)

points(deer.spdf,col="red")

plot (HexPols2, add=T)

#Now add labels of State and County to Map

text (coordinates (HexPols2), labels=sapply(slot(HexPols2, "polygons"),
function(i) slot(i, "ID")), cex=0.3)

As an alternative to importing a polygon that we created in ArcMap, we can create a
polygon in R using the coordinates of the boundary box of the area of interest. In our
case here, the bounding box will be the mule deer locations.

#First we need to create the polygon within the extent of our mule deer locations

proj4string(deer.spdf)

bbox (deer.spdf@coords)

bb <- cbind(x=c(-108.69984,-108.69984,-109.14286,-109.14286, -108.69984),
y=c(37.63163, 37.92621,37.926&%,37.63163,37.63163))

11.

12.

SP <- SpatialPolygons(list(Polygons(list(Polygon(bb)),"1")),
proj4string=CRS(proj4string(MDclip)))

plot (SP)

proj4string(SP)

points(deer.spdf,col="red")

#CODE below will keep original metadata of MDclip polygon from above now called SP
gl <- gIntersects(MDclip, SP, byid=TRUE)

out <- vector(mode="list", length=length(which(gI)))

ii <=1

for (i in seq(along=gI)) if (gI[il) {

out[[ii]] <-

gIntersection(MDclip[i,], SP); row.names(out[[ii]]) <-
row.names (MDclip) [i]; ii <- ii+1

}

outl <- do.call("rbind", out)

plot(outl, col = "khaki", bg = "azure2", add = TRUE)

#but do remember to reset par() to defaults with:
oldpar <- par(plt = c(0.57, 0.87, 0.4, 0.7), new = TRUE)

#before the insert and:
par (oldpar)

#afterwards!
plot(outl)
points(deer.spdf,col="red")

Now let’s make practical use of the new bounding box we created by clipping a larger
raster dataset. A smaller raster dataset runs analyses faster, provides a zoomed in view
of mule deer locations and vegetation, and is just easier to work with.

#Load vegetation raster layer textfile from ArcMap
veg <-raster("extentnlcd2.txt")

plot(veg)

class(veg)

#Clip using the raster imported with "raster" package
bbclip <- crop(veg, SP)

veg

#WON’T WORK because projections are not the same, WHY?

#Let’s check projections of layers we are working with now.
proj4string(MDclip)

proj4string(deer.spdf)

proj4string(SP)

proj4string(veg)

We need to have all layers in same projection so let’s project the deer.spdf to Albers and
then clip vegetation layer with new poly%(())n we created in the Albers projection.

Albers.crs <-CRS("+proj=aea +lat_1=29.5 +lat_2=45.5 +lat_0=23 +lon_0=-96
+x_0=0 +y_0=0 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs")

deer.albers <-spTransform(deer.spdf, CRS=Albers.crs)

points(deer.albers, col="red")

class(deer.albers)

proj4string(deer.albers)

head(deer.spdf)

head(deer.albers)

#Now determine the new coordinates and create a new polygon to clip the raster.
bbox (deer.albers)
bbl <- cbind(x=c(-1106865,-1106865,-1145027,-1145027, -1106865),
y=c (1695607, 1729463,1729463,1695607,1695607))
AlbersSP <- SpatialPolygons(list(Polygons(list(Polygon(bb1)),"1")),
proj4string=CRS(proj4string(deer.albers)))

#Check to see all our layers are now in Albers projection
plot (AlbersSP)

proj4string(veg)

projéstring(deer.albers)

proj4string(AlbersSP)

plot(veg)
points(deer.albers, col="red")

#Clip using the raster imported with "raster" package
bbclip <- crop(veg, AlbersSP)

plot(bbclip)

points(deer.albers, col="red")

plot(AlbersSP, lwd=5, add=T)

#text (coordinates (AlbersSP), labels="Colorado Mule Deer")

1.9 Creating a square polygon grid over a study area

Recently researchers have been creating grids for analyses of various shapes. We already
explored how to create a hexagonal grid but now we will learn how to create a square grid
within the extent of a pre-defined study area. This method requires a few more steps but
square polygon grids and the resulting adjacency matrix are common in disease epidemiology
and will be used in future exercises.

1. Load the appropriate packages that we have already used.

library(sp)
library(rgdal)
library(raster)
library(adehabitatMA)

2. We need to have all layers in same projection so import, create, and remove outliers for
mule deer locations then project all to the Albers projection as we did previously.

muleys <-read.csv("DCmuleysedited.csv", header=T)

summary (muleys$id) o1

str(muleys)

#Remove outlier locations

newnuleys <-subset(muleys, muleys$X > 599000 & muleys$X < 705000
& muleys$Y > 4167000)

muleys <- newmuleys

#Make a spatial data frame of locations after removing outliers
coords<-data.frame(x = muleys$Long, y = muleys$Lat)
crs<-"+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"
head(coords)

deer.spdf <- SpatialPointsDataFrame(coords= coords, data = muleys,
proj4string = CRS(crs))

head(deer.spdf)

proj4string(deer.spdf)

#Project the deer.spdf to Albers as in previous exercise

Albers.crs <-CRS("+proj=aea +lat_1=29.5 +lat_2=45.5 +lat_0=23 +lon_0=-96 +x_0=0
+y_0=0 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs")

deer.albers <-spTransform(deer.spdf, CRS=Albers.crs)

proj4string(deer.albers)

bbox (deer.albers)

min max

#x -1145027 -1106865

#y 1695607 1729463

. Create points for x and y from the bounding box of all mule deer locations with 1500 m
spacing between each point.

plot(deer.albers)

create vectors of the x and y points

x <- seq(from = -1145027, to = -1106865, by = 1500)
y <- seq(from = 1695607, to = 1729463, by = 1500)

. Create a grid of all pairs of coordinates (as a data.frame) using the "expand grid"
function and then make it a gridded object.

xy <- expand.grid(x = x, y = y)
class(xy)
str(xy)

#Identifiy projection before creating Spatial Points Data Frame

crs2<-"+proj=aea +lat_1=29.5 +lat_2=45.5 +lat_0=23 +lon_0=-96 +x_0=0 +y_0=0
+ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs"

grid.pts<-SpatialPointsDataFrame(coords= xy, data=xy, proj4string = CRS(crs2))

plot(grid.pts)

gridded(grid.pts)

class(grid.pts)

#Make
points a gridded object (i.e., TRUE or FALSE)

gridded(grid.pts) <- TRUE -

gridded(grid.pts)
str(grid.pts)
plot(grid.pts)

. Make the grid of points into a Spatial Polygon then convert the spatial polygons to a
SpatialPolygonsDataFrame.

grid <- as(grid.pts, "SpatialPolygons")

plot(grid)

str(grid)

class(grid)

summary (grid)

gridspdf <- SpatialPolygonsDataFrame(grid, data=data.frame(id=row.names(grid),
row.names=row.names (grid)))

names.grd<-sapply(gridspdf@polygons, function(x) slot(x,"ID"))

text (coordinates(gridspdf), labels=sapply(slot(gridspdf, "polygons"),
function(i) slot(i, "ID")), cex=0.3)

points(deer.albers, col="red")

str(gridspdf@polygons)

. Similar to the hexagonal grid, identify the cell ID that contains each mule deer location.

o = over(deer.albers,gridspdf)
head (o)

new = cbind(deer.albers@data, o)
head (new)

. We get some NA errors because our grid does not encompass all mule deer locations so
expand the grid then re-run the code over from xy through new?2 again.

-1155027, to = -1106865, by = 1500)
1695607, to = 1739463, by = 1500)

x <- seq(from
y <- seq(from

##BE SURE TO RUN CODE FROM XY CREATION THROUGH NEW2 AGAIN THEN BEFORE CODE BELOW!!

02 = over(deer.albers,gridspdf)

head(02)

new2 = cbind(deer.albers@data, o02)#No more NAs causing errors!
new2[1:15,]

. Now we can load a vegetation raster layer textfile clipped in ArcMap to summarize
vegetation categories within each polygon grid cell.

veg <-raster ("ExtentNLCD2.txt")
plot(veg)
class(veg)

. Clip the raster within the extent of the newly created grid

bbclip <- crop(veg, gridspdf)
plot(bbclip)
points(deer.albers, col="red")
plot(gridspdf, add=T)

#Cell size of raster layer
xres(bbclip)#shows raster cell size

#Create histogram of vegetation categories in bbclip
hist(bbclip)

#Calculate the size of each cell in your square polygon grid
ii <- calcperimeter(gridspdf)#requires adehabitatMA package
as.data.frame(ii[1:5,])#Identifies size of only the first 5 grid cells

10. We can extract the vegetation characteristics within each polygon of the grid.
table = extract(bbclip,gridspdf)

11. We can then tabulate area of each vegetation category within each polygon by
extracting vegetation within each polygon by ID then appending the results back to the
extracted table by running it twice but with different names. Summarizing the
vegetation characteristics in each cell will be used in future resource selection analysis or
disease epidemiology.

table = extract(bbclip,gridspdf)
str(table)

area = extract(bbclip,gridspdf)
combine=lapply(area,table)
combine

combine[[1]]#Shows vegetation categories and numbers of cells in grid #1
21 22 31 42 52 82 90
38 7 23 392 1883 11 146

combine[[27]]
21 42 52 81 82
101 69 279 5 2046

1.10 Creating buffers

For this exercise, we will again be working with the Colorado mule deer locations and rasters
from earlier sections (1.3, 1.7). Creating buffers around locations of animals, plots, or some
other variable may be necessary to determine what occurs around the locations. Often times,
in resource selection studies, we may want to generate buffers that can be considered used
habitat within the buffer as opposed to simply counting only the habitat that the location is
in. Let’s begin with loading the proper packages and mule deer locations from previous
exercise. Because we are dealing with the raster layer projected in Albers, we will need to
project our mule deer locations as we did above.

1. Load libraries and mule deer locations from previous exercise

library(sp)
library(lattice)
library(rgdal)
library(rgeos)
library(raster)

muleys <—read.csv(“C:\\Walter\\Wa%;EISpatialEcologyLab\\SpatialEcologyCourse\\

Chapter3\\Distance\\DCmuleysedited.csv", header=T)
summary (muleys$id)

#Let’s subset data so there are fewer locations to work with
muley8 <- subset(muleys, id=="D8")

str (muley8)

summary <- table(muley8$UTM_Zone,muley8$id)

summary (muley8%$id)

muley8$id <- factor(muley8$id)

#Remove outlier locations if needed

summary (muley8$Long)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-111.8 -108.9 -108.9 -108.9 -108.9 -108.8
#NOTE: Min. of -111.8 is an outlier so remove
summary (muley8$Lat)

Min. 1st Qu. Median Mean 3rd Qu. Max.
33.38 37.84 37.84 37.83 37.85 37.86
#NOTE: Min. of 33.38 is an outlier so remove
newmuley8 <-subset(muley8, muley8$Long > -111.7 & muley83Lat > 37.80)
str(newmuley8)

muley8 <- newmuley8

#Make a spatial data frame of locations after removing outliers
coords<-data.frame(x = muley8$Long, y = muley8$Lat)
crs<-"+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"
head(coords)

deer.spdf <- SpatialPointsDataFrame(coords= coords, data = muley8,
proj4string = CRS(crs))

head(deer.spdf)

class(deer.spdf)

proj4string(deer.spdf)

study.zoom<-readOGR(dsn=".",layer="MDzoom")
plot(study.zoom,pch=16)
points(deer.spdf, col="red")

#Again let’s project the deer.spdf to Albers

Albers.crs <-CRS("+proj=aea +lat_1=29.5 +lat_2=45.5 +lat_0=23
+lon_0=-96 +x_0=0 +y_0=0 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0
+units=m +no_defs")

deer.albers <-spTransform(deer.spdf, CRS=Albers.crs)

class(deer.albers)

projé4string(deer.albers)

head(deer.spdf)

head(deer.albers)

. Clip the study.zoom so we can zoom in on mule deer 8 locations as we did in previous
exercise but with a bounding box of only mule deer 8 locations.

bbox(deer.albers)
25

bbl <- cbind(x=c(-1115562,-1115562,-1120488,-1120488, -1115562),
y=c(1718097,1722611,1722611,1718097,1718097))

AlbersSP <- SpatialPolygons(list(Polygons(list(Polygon(bb1)),"1")),
proj4string=CRS(proj4string(deer.albers)))

plot (AlbersSP)

points(deer.albers, col="red")

. Load the vegetation raster layer textfile clipped in ArcMap to be within several counties
around the mule deer locations. Plot the points and bounding box over the vegetation
layer and notice they are barely visible due to the large extent of the raster layer.

veg <-raster("extentnlcd2.txt")
plot(veg)

plot (AlbersSP,add=T)
points(deer.albers, col="red")

. We can clip the vegetation raster and plot the bounding box polygon and locations on
the raster. Notice that the locations are nearly off the extent of the raster.

bbclip <- crop(veg, AlbersSP)
plot(bbclip)
plot(AlbersSP,add=T,)
points(deer.albers, col="red")

. So let’s create a new bounding box that encompass mule deer 8 locaitons but also
extends beyond the periphery of the outermost locations. Then clip the large vegetation
raster again so it is within the newly created bounding box polygon.

bbox (deer.spdf)

bbl <- cbind(x=c(-1115000,-1115000,-1121000,-1121000, -1115000),
y=c(1717000,1723000,1723000,1717000,1717000))

AlbersSP <- SpatialPolygons(list(Polygons(list(Polygon(bbl)),"1")),
proj4string=CRS(proj4string(deer.albers)))

#Clip the vegetation raster within the boundaries of the new "AlbersSP."
bbclip <- crop(veg, AlbersSP)
windows ()

#Plot the clipped raster, bounding polygon, and mule deer 8 locations
plot (bbclip)

plot (AlbersSP,1lwd=2,add=T)

points(deer.albers, col="red")

. To conduct some analyses, let’s create 100 m buffered circles around all the locations
and extract vegetation that occurs in each buffered circle.

extract (bbclip,deer.albers)
settbuff=gBuffer(deer.albers,width=100)
plot (bbclip)

plot(settbuff, add=TRUE, lty=2)
table(extract(bbclip,settbuff))

#Cell size of raster layer

res(bbclip)

3072 #30 x 30 m resolution of the raster
26

[1] 900

> 900%37 #Times the number of cells in category 21 (i.e., developed habitat)
[1] 33300

> (900%37) /1000000 #Divide to convert square meters to square kilometers
0.0333 km2 #habitat 21

7. Most efforts will want percent habitat or area of each habitat defined individually for
each location (i.e., within each buffered circle). To do this we only need to specify in the
gBuffer function to create unique buffered circles with the byid=TRUE command (Fig.
1.9a,b).

Figure 1.9: Buffers around mule deer locations using the a) byid=FALSE (default) and
b) byid=TRUE for the gBuffer function using package rgeos.

settbuff=gBuffer(deer.albers, width=100, byid=TRUE)
windows ()

plot(bbclip)

points(deer.albers, col="blue")

plot(settbuff, add=TRUE, 1lty=2)

#Extract the amount of vegetation in each buffer and place it in a table by
buffer ID

e= extract(bbclip,settbuff)

et=lapply(e,table)

et

#Example below identifies buffered circles number 405, 406, and 407

[[405]1]
41 42 52 #Vegetation categories 41, 42, and 52 have 5, 5, and 27 cells, respectively

5 527

[[406]1]
52 #0nly vegetation category 52 with 35 cells
35

[[407]11]
27

42 52 #Vegetation categories 42 and 52 have 7 and 27 cells, respectively
T 27

28

Chapter 2

Climate Data Interpolation

Contents
2.1 Incorporating background spatial layers 30
2.2 Accessing climatedata et e e e 30
2.3 Cleaning raw climate data i ittt vttt 31
2.4 Usingdatain R 0 0 i i i i i i i e it e e e e e e e e e e 33
2.5 Usingdatain ArcMap ¢ ¢ i i i i i i i i ittt it e e e e e 38
2.6 Importing dynamically downscaled global climate data 41
Figures
2.1 Estimated probability of occupancy of snowshoe hare across the current
range in Pennsylvania, 2004. o o 41

The purpose of this chapter is to bring in climate data from weather stations or
aquatic monitoring stations that are often in a text files or from spreadsheet software. These
files often may be numerous separate files that you only want to summarize by station,
annually, monthly, or some other time period. We are going to show you how to bring these
files into R, clean up data, and create your own GIS layer for use in modeling efforts. The
example used is from a project that attempted to predict snowshoe hare (Lepus americanus)
presence or absence in Pennsylvania and determination of how habitats occupied may change
due to changes in climate and temperature.

We obtained shapefiles from a variety of sources (see Section 2.1 for details) and
weather station data from the National Oceanic and Atmospheric Administration’s National
Climatic Data Center and cleaned up data outside of R (see Section 2.2 for details). Data
were collected from 102 weather stations in and around Pennsylvania in order to determine
mean snow depths (SNWD), mean maximum temperatures (TMAX) and mean minimum
temperatures (TMIN) for the month of January from 1995 to 2005. Data were used only from
stations with records for at least 10 of the 11 Januaries covered by the time range. For each
weather station, records for each of the three climate variables were included only if the data
covered at least 95 percent of total January days. These criteria resulted in data from 66
stations for snow depth, 69 stations for maximum temperature, and 68 stations for minimum
temperature. This data was edited outside of R and the resulting text files were then combined
in R (Section 2.3). Alternatively, we can obtain data directly from NOAA (section 2.4) and
clean it up in R prior to moving forward thus eliminating the need for Section 2.3.

We entered spatial coordinates for the weather stations along with climate data that
met the selection criteria into program R a geographic information system ((Section 2.5;
ArcMap 9.3). Data from these stations were then used to create maps that showed the range
of mean snow depth, mean maximum temperature, and mean minimum temperature for the
month of January across the state. This was accomplished with interpolation using the kriging

method in ArcMap. The interpolations included data from a total of 46 weather stations
outside Pennsylvania in order to avoid errors associated with boundary issues. The
interpolated maps were then used to assign the appropriate climate data for each location
sampled for presence of snowshoe hare in 2004.

These data were then used to select a model for predicting occupancy probability of
snowshoe hare. Tested models examined occupancy as a function of habitat type and one of
four additional correlated variables (elevation, minimum Jan temp, max Jan temp, and Jan
snow depth). The model including mean minimum temp (TMIN) was found to be the best
one, and the co-efficients for that model, which varied by habitat type, were included as a
shapefile (county param) to calculate occupancy probability based on habitat type and TMIN
across the range of snowshoe hare counties (Figure 4).

2.1 Incorporating background spatial layers

1. PA_ Counties and Snowshoe_ Counties: Basic PA shapefile with county boundaries and
a clip of only the counties with hare harvest reported.

2. Data_ TMIN, Data_ TMAX, and Data_ SNWD: These are the files that result from
assigning interpolation values to points. Attribute table for each will have TMIN,
TMAX or SNWD values, which are then added to the study’s database.

3. Weather Stations_ All: This shapefile is created from the data produced in R, namely
the mean January values for TMIN, TMAX, and SNWD for each station from Jan. 1995
to Jan. 2005.

4. Weather Stations TMIN, Weather Stations TMAX, Weather Stations SNWD:
These are the files that are used for interpolating weather variables across the state. The
Weather_Stations All shapefile is split into three shapefiles, one each for TMIN,
TMAX and SNWD. Not every weather station has data for each of the three weather
variables, and 0 values must be taken out in order for the interpolation’s to be correct.

5. 2004_Study_ Locs: Shapefile contains point data for all locations in 2004 snowshoe hare
study. These points are used to assign interpolation values for new shapefiles
(Data_ TMIN, Data_ TMAX, Data_ SNWD).

6. pa_krig tmin, pa_krig tmax, pa_krig snwd: These are the interpolation shapefiles,
based on Weather_ Stations_ TMIN, Weather Stations_ TMAX,
Weather Stations SNWD.

7. counties_ hab: Contains the four forest types for the snowshoe hare counties:
Coniferous, Mixed, Deciduous, Transitional.

8. county param: Assigns values to each forest type based on Duane’s model. These
values will be used to determine occupancy probability when the model is plugged into
map algebra.

2.2 Accessing climate data

1. Let’s find some weather data and explore the format available by copying the NOAA
data link into a web browser http://www.ncdc.noaa.gov/cdo-web/ or just select the

link here: NOAA Data 20

http://www.ncdc.noaa.gov/cdo-web/

2.3

. Select the Interactive Map Application box then All Maps tab, then choose

"GHCN-Daily" all in a separate window.

. Use polygon to select a defined area, check "GHCND" under "GHCN Daily", and

scroll/zoom with the Polygon tool that allows for selecting areas outside PA boundaries
for inclusion. This is done in order to create a better interpolation for SnowDepth,
TMIN TMAX

. Selection will bring up all weather stations in area. Look under "Period of Record to

determine whether it has data for Jan. 1 1995 Jan. 31 2005 If 1 year out of the 11 is
missing, save it. Greater than 1, skip it. Select all that match dates and click "Get
Selected Data'

. On next page, make "Output date range" as 01 Jan 1995 to 01 Jan 2005 and select the

"Custom GHCN-Daily CSV" box and select continue.

Then select:

SnowDepth (under Precipitation)

TMIN (under Air Temperature)

TMAX (under Air Temperature)

Be sure to include Include Station Name and Geographic Location (Lat Long Elev)

. Wait for email with link then click and Save file as .csv

Below are specific instructions when retrieving data for a specific station with known
GHCND code:

1. Go to NOAA Climate Data Online NOAA Data

2. Select data search Enter GHCND code (but don’t include "GHCND:" portion of code
in search term) Select "Daily GHCND" as data set

3. If dates match desired range (see 4), select station and hit continue If not, remain on
page and enter new GHCND code in search box 4. Start date for this project: Jan. 1,
1995 End date: Jan. 31, 2005 5. Select "Custom GHCN Daily CSV" format option, hit
continue

6. Under Precipitation, select PRCP, SNOW, SNWD

7. If have Air Temperature, select TMAX, TMIN

8. Select Station Name in "Additional Output Options" and hit continue

9. You will receive two emails - one confirming order and one with link to data

10. Click link, save data as .csv file with Station Name as file name

11. Click on Data Search, repeat process until have data for all weather stations

Cleaning raw climate data

. For each csv file, save as Excel Worsheet 1997-2003 if importing to NCSS or keep in csv

or txt if using R.

. Take out all non-Jan months for every year

. Check that file meets criteria:

Each weather station must have records for at least 10 of the 11 Januaries Each weather
station must have at least 95This means at least 325 days for 11 seasons and 295 days
for 10 seasons

Snow Depth (SNWD) 66 stations Maximum temp (TMAX) 69 stations Minimum temp

(TMIN) 68 stations .

http://www.ncdc.noaa.gov/cdo-web/

4. The code that follows should have all files in the same folder but not the R script or any
R files or code will not run. The code below brings in each text file and summarizes the
data for each weather station as instructed in the code.

Vector of files names in working directory
files <- list.files(pattern = ".txt")

Total number of files in working directory (for loop below)
n.files <- length(files)

Container to hold text files
files.list <- list()

(populate the container files.list with weather data sets
files.list <- lapply(files, read.table, header =T, sep="\t")

Set up matrix for weather station summary data
ml <- matrix(NA,ncol=8,nrow=n.files)

Loop for running through all weather station files
for(i in 1:n.files){

#Assign elevation
mif[i,1] <- files.list[[i]][1,10]

#Assign Lat
mi[i,2] <- files.list[[i]][1,11]

#Assign Long
mi[i,3] <- files.list[[1]][1,12]

#Calculate mean snow depth
SNWD_mm <- mean(files.list[[i]][,7],na.rm=T)

#Convert snow depth mean to inches
SNWD_in <- SNWD_mm/25.4

#Assign snow depth
ml[i,4] <- SNWD_in

#Calculate mean maximum temp
TMAX_C <- mean(files.list[[i]][,8],na.rm=T)

#Convert max temp to F
TMAX_F <- TMAX_Cx0.18 + 32

#Assign max temp
mi[i,5] <- TMAX_F

#Calculate mean minimum temp
TMIN_C <- mean(files.list[[i]][,9],na.rm=T)

32

2.4

#Convert min temp to F
TMIN_F <- TMIN_C*0.18 + 32

#Assign min temp
ml[i,6] <- TMIN_F

#Reassign GHCN number
GHCN <- toString(files.list[[i]][1,1]1)

#Assign Station Name
m1[i,7] <- GHCN

#Reassign Station Name
SN <- toString(files.list[[i]][1,2])

#Assign Station Name
mi[i,8] <- SN
colnames(ml) <- c("Elevation","Lat","Long","SNWD","TMAX","TMIN","Station")

write.csv(ml,paste(".","\\output.csv",sep=""))

#Removes quotes from output table below
ml <-noquote(ml)

#Results of code that summarizes the 6 weather stations

ml

Elevation Lat Long SNWD TMAX TMIN GHCN Station
[1,]1 520 42.249 -77.758 15.5568 31.969 13.299 USC00300085 ALFRED
[2,] 457.2 42.1 -78.749 7.698 30.175 14.466 USC00300093 ALLEGANYSP
[3,] 452 42.303 -78.018 5.293 30.872 11.687 USC00300183 ANGELICA
[4,] 341.4 42.348 -77.347 4.122 32.247 13.549 USC00300448 BATH
(5,1 80.2 40.833 -75.083 NaN 36.457 19.621 USC00280734 BELVIDERE

Using data in R

. This code is designed to process data downloaded from Climate Date Online.

<http://www.ncdc.noaa.gov/cdo-web/> This version looks at weather stations that
provide snowfall data in and around Pennyslvania. The code pulls out the desired data
from the downloaded aggregate weather-station file and calculates the mean annual
snowfall per weather station for 12/1/94 - 3/31/05. The data is then exported to a text
file for interpolation in ArcGIS.

#Load libraries
library(adehabitatHR)
library(rgdal)
library(gstat)
library(plyr)

remove other objects from the working session

rm(list=1s())

. Read weather station data - note the use of stringsAsFactors=FALSE and
na.strings="-9999’

WS <-read.table(’Weather_Station_Data-Sep_01Dec1994-31March2005.txt’,
stringsAsFactors=FALSE, na.strings=’-9999°’ ,header=T)

#Check data
dim(WS)

head (WS)
summary (WS)

#Reformat DATE and create Year Month Day columns from NewDate column
WS$NewDate <- as.Date(as.character (WS$DATE), format ("%Y%m¥%d"))
WS$Year = as.numeric(format(WS$NewDate, format = "%Y"))

WS$Month = as.numeric(format (WS$NewDate, format = "%m"))

WS$Day = as.numeric(format(WS$NewDate, format = "%d"))

head (WS)

. Make a subset of WS that includes only the months of Dec-March with further
manipulation of the data for desired output of project objectives.

Winter <- WS[WS$Month %in% c(1,2,3,12), 1]

#For December, add 1 to Year so that Year matches Jan-March in that season
Winter <- within(Winter, Year[Month==12] <- Year[Month==12] +1)

#Check subset, including random row to make sure only selected months included
dim(Winter)
head(Winter)
Winter [699,]

#Create a matrix of unique STATION values (GHCND) with Lat/Long values for
#later reference. Data contains some multiple versions of individual GHCND
#coordinates. Only want 1 set per.

PulledCoords <- Winter[!duplicated(Winter[,1]),]

head (PulledCoords)

dim(PulledCoords)

CoordChart <- ddply(PulledCoords, c(’STATION’), function(x) c(Lat=x$LATITUDE,
Long=x$LONGITUDE))
head (CoordChart)

#Get the number of snowfall records for each STATION for each year and name it

#RecordTotal. Note that NA is omited from the length count ###

WinterRecords <- ddply(Winter, .(STATION,Year), summarize, RecordTotal =
length(na.omit (SNOW)))

head(WinterRecords)

tail(WinterRecords)

dim(WinterRecords)

34

#Get the total amount of snowfall per STATION per year and name it YearlySnow

YearlySnow <- ddply(Winter, .(STATION,Year), summarize, Snow = sum(SNOW,
na.rm=TRUE))

head(YearlySnow)

tail(YearlySnow)

dim(YearlySnow)

#Combine WinterRecords and YearlySnow into one matrix
AllWinters <- cbind(WinterRecords,YearlySnow)
AllWinters <- AllWinters[,-4:-5]

head(AllWinters)

tail(AllWinters)

dim(AllWinters)

#0nly include years that have more than 75, of days recorded ###
WinterDays <- 121

FullWinters <- AllWinters[AllWinters$RecordTotal/WinterDays > 0.75,]
head (FullWinters)

tail(FullWinters)

dim(FullWinters)

#Get the number of years with more than 75} of days recorded for each STATION

WinterYears <- ddply(FullWinters, c(’STATION’), function(x) c(TotalYears=
length(x$Year)))

head(WinterYears)

tail(WinterYears)

dim(WinterYears)

#Get the total amount of snow for each station for all years ###

TotalWinterSnow <- ddply(FullWinters, c(’STATION’), function(x) c(TotalWinterSnow=
sum(x$Snowl)))

head(TotalWinterSnow)

dim(TotalWinterSnow)

#Combine WinterYears and TotalWinterSnow into one matrix ###
SnowCalc <- cbind(WinterYears,TotalWinterSnow)

SnowCalc <- SnowCalc[,-3]

head (SnowCalc)

#Get rid of the stations that don’t have at least 10 years recorded at >75%
#of days

Complete.Records <- SnowCalc[SnowCalc$TotalYears > 9,]
head(Complete.Records)

dim(Complete.Records)

#Calculate average annual snowfall and round to nearest mm
Complete.Records$MeanAnnualSnowfall <-
Complete.Records$TotalWinterSnow/Complete.Records$TotalYears
Complete.Records$MeanAnnualSnowfall <-
round (Complete.Records$MeanAnnualSnowfall, digits = 0)
head (Complete.Records)

35

#Convert SnowDepth from mm to cm
Complete.Records$MeanAnnualSnowfall <- Complete.Records$MeanAnnualSnowfall/10
head (Complete.Records)

#Add a column to CoordChart showing whether each row matches a STATION in
#Complete.Records. Use "NA" for value if no match, then delete rows with

#"NA" value.

#Number of rows in CoordChart should now equal number of rows in Complete.Records
CoordChart$match <- match(CoordChart$STATION, Complete.Records$STATION, nomatch=NA)
CoordChart <- na.omit(CoordChart)

head (CoordChart)

dim(CoordChart)

dim(Complete.Records)

#Combine Complete.Records and CoordChart. Make sure each STATION matches in row
#Delete any rows that don’t match. Shouldn’t be any. If # of rows in Final.Values
#is less than number of rows in CoordChart, there is a problem (but note that
#number of cols does change) .

Final.Values <- cbind(Complete.Records,CoordChart)

Final.Values$match2 <- match(Final.Values[,1], Final.Values[,5], nomatch=NA)
Final.Values <- na.omit(Final.Values)

dim(Final.Values)

dim(CoordChart)

head(Final.Values)

#Take out unnecssary rows (2nd STATION, match, and match2) and round MeanSnow
#to 2 decimal places

Final.Values[,5] <- Final.Values[,8] <- Final.Values[,9] <- NULL
head(Final.Values)

. Make data frame to get rid of lists (in R) so can export to text file to use to load
weather station points into ArcGIS and skip to Section 2.5.

Final.Values <- as.data.frame(lapply(Final.Values,unlist))
write.table(Final.Values, "MeanSnowData_95-05.txt", sep="\t", row.names=F)

. Alternatively we can conduct interpolation directly in R using the steps below.

#Need to convert factors to numeric
Final.Values$Longitude <- as.numeric(as.character(Final.Values$Long))
Final.Values$Latitude <- as.numeric(as.character(Final.Values$Lat))

#Here we need to create Spatial points, attach ID and Date Time sorted
data.xy = Final.Values[c("Longitude","Latitude")]

#Creates class Spatial Points for all locatiomns

xysp <- SpatialPoints(data.xy)

#proj4string(xysp) <- CRS("+proj=longlat +ellps=WGS84")

#Creates a Spatial Data Frame from
sppt<-data.frame(xysp)

36

#Creates a spatial data frame of STATION
ID<-data.frame(Final.Values[1])

#Creates a spatial data frame of Mean Annual Snow Fall
MAS<-data.frame(Final.Values[4])

#Merges ID and Date into the same spatial data frame
merge<-data.frame(ID,MAS)

#Adds ID and Date data frame with locations data frame
coordinates (merge) <-sppt

proj4string(merge) <- CRS("+proj=longlat +ellps=WGS84")

#Import a county layer for study site and check projections
counties<-read0OGR(dsn=".",layer="PACountiesAlbers")
proj4string(counties)

plot(counties)

#Project Weather Stations to match Counties

Albers.crs <-CRS("+proj=aea +lat_1=29.3 +lat_2=45.3 +lat_0=23 +lon_0=-96
+x_0=0 +y_0=0 +datum=NAD83 +units=m +no_defs +ellps=GRS80 +towgs84=0,0,0")

stations <- spTransform(merge, CRS=Albers.crs)

#Plot Weather Stations over counties
points(stations)

stations@data$MAS <- stations@data$MeanAnnualSnowfall
str(stations)

str(counties)

create a grid onto which we will interpolate:
xx = spsample(counties, type="regular", cellsize=10000)
class(xx)

points(xx, bg="red", cex=.5,col="red")

#Convert to a SpatialPixels class
gridded(xx) <- TRUE
class(xx)

plot(xx)
points(stations, bg="red", cex=.5,col="red")

#Plot out the MAS across the study region
bubble(stations, zcol=’MAS’, fill=FALSE, do.sqrt=FALSE, maxsize=2, add=T)

create a grid onto which we will interpolate:
first get the range in data
x.range <- as.integer(range(stations@coords[,1]))
y.range <- as.integer(range(stations@coords[,2]))

now expand to a grid with 500 meter spacing:
grd <- expand.grid(x=seq(from=x.range[1], to=x.range[2], by=5000),

37

y=seq(from=y.range[1], to=y.range[2], by=5000))

convert to SpatialPixel class
coordinates(grd) <- ~ x+y
gridded(grd) <- TRUE

test it out:

plot(grd, cex=0.5)

points(stations, pch=1, col=’red’, cex=0.7)
title("Interpolation Grid and Sample Points")

X <- krige(stations@data$MAS~1, stations, xx)
class(x)
image (x)
points(stations, pch=1, col=’blue’, cex=0.7)

2.5 Using data in ArcMap

1. Add weatherstation data with January means for SNOW, TMIN and TMAX to GIS.
Create as its own shapefile with data in attribute table (Weather_Stations__ All).

(a) Take output from R and save to an excel file
b) Add headers as appropriate
) Format text columns as text, number columns as numbers
No blank spaces (for NULL in numeric, use 9999)
In ArcMap, use Tools Add XY Data
Choose File and make sure X is Long, Y is Lat
Import GCS from
C:/GIS_Projects/SnowshoeHare/Statewide_Stations (NAD83_GEOD)
) Click OK Ignore Object ID Field warning
) This will bring up an Events file that needs converting to shapefile
) Right click and select Data / Export Data
(k) Select "All Features" and "this layer’s data source"
) Give it the name you want, click OK (Weather_Stations_All)
) Say yes for adding to map. You now have a shapefile

2. Split into three shapefiles, one each for SNOW, TMIN and TMAX so that each attribute
table has only those weather stations with data for that category. Do this by creating
copies of Weather_Stations_ All and then editing each attribute table to eliminate rows
without the appropriate data for that file (e.g., missing data for min temp in the
Weather _Stations_ TMIN_shapefile).

3. Create interpolations for Snow, TMin, TMax.

(a) In Spatial Analyst toolbar, select Irgzgrpolate to Raster Kriging

(b) Input point should be file with data to be used (TMIN, TMAX, SNWD)
(c) Z value field is values for interpolation (e.g., Jan Snow in SNWD)

)

)
(d) Keep default values
(e) Give name to Output Raster (e.g., pa_krig_snwd)
)

(f) NOTE: If have trouble getting a field to show as z-value, create a new field in
attribute table, start editing, copy values from excel file into new field (must be
some kind of glitch with excel)

(g) NOTE 2: ArcGiS likes to convert "NaN" to 0. It then includes the 0 as part of
interpolation. That’s why need to create separate shapefiles for each category (e.g.,
SNWD, TMAX, TMIN) and eliminate rows that have 0 values that don’t reflect
actual data, so that interpolation is correct.

4. Add geographic locations for study points from 2005 study called
2004_Study_ Locs.shp. Follow same steps as in 1.

5. Assign interpolation values to points
(a) Go to Toolbox / Spatial Analyst Tools
(b) Under Extraction, select Extract Values to Points (e.g., TMIN)

(¢) Add Input Point Feature (2004_ Study_ Locs) , Input Raster Feature (e.g.,
pa_krig tmin), and name new point file (e.g., Data_ TMIN).

(d) Once added, give an Alias to the new Field in Attribute table (e.g., TMIN).

(e) Can’t add more than one field of raster data to point files, so have to make separate
shapefile for each interpolation.

6. Add weather values to study’s database.
(a) Open attribute table
(b) Select all
(c) Right click on left-side gray boxes
(d) Select "Copy Selected"
(e) Paste into spreadsheet
7. Send revised database to Duane so he can run models and select best one.
(a) Snowshoe hare database ELEV_SNWD_TMIN_TMAX.xls
(b) Occupancy as a function of Tmin.xlsx

8. Create new shapefile (county_param) from habitat shapefile (counties hab) that gives
parameter values for habitat type based on model. You will need this for step 8. NOTE:
This can be the glitchiest step.

(a) From Occupancy as a function of Tmin.xlsx:
1 Conifer 0.490
2 Mixed 1.799
3 Deciduous 0

4 Transitional 1.771
39

9.

10.

(b) In county_ param attribute table, add two fields: "Type" and "Param."
NOTE: For Param, choose type as Float.
In Field Properties:
Precision - determines the number of digits a number can hold
Scale - indicates the number of decimal places

If you want numbers to the left of decimal, must make sure that precision value is
at least 42 greater than scale value - One of these will be used to count the
decimal. Example: I needed to put 6 for precision and 4 for scale for the properties
to actually show as 5 decimal points with one of them to the left of the decimal
(e.g., 5.0128).

(c) Type simply adds the text for each category (i.e., Coniferous, etc.)

(d) Param is the value that will be used when doing a Lookup function to create new
raster with parameters as values. Enters the values from "a" above.

(e) Next, in ArcMap Toolbox, under Spatial Analyst tools / Reclass, use the Lookup
command. This will create a new raster based on the values in another raster’s
attribute table. So ... create a new raster (county__param) based on the Param
field in the habitat raster (counties_hab).

(f) When the new raster (county__param) comes up, chances are it will have some crazy
symbology you don’t need. Open up the Properties and reclassify to unique values.
This will bring up the values previously assigned as parameters in the original layer.
Change these to the color coding that matches the values in the original raster
(e.g., mixed forest) and add each habitat name along with the parameter value to
the file’s symbology. This will help to keep things orderly and easy to follow.

Use Single Output Map Algebra to plug parameter values into GIS to create an
occupancy probability shapefile (Occupancy). Formula:

exp(7.4391310 + county param + -0.5289919 * Data_ TMIN) / (1 + exp(7.4391310 +
county param + -0.5289919 * Data_ TMIN))

Note that this logit formula provides the actual values for the intercept and TMIN
parameter and then looks to each cell to find its habitat parameter value
(county_ param) and its TMIN value (Data_ TMIN).

Go into symbology and add natural breaks at 10% intervals. This will allow for the
ability to show changes over time in terms of habitat loss or gain. If use a color scale,
colors will adjust according to max value and min value. With 10% breaks, colors are set
to show only values that fall within that range of occupancy probability.

40

Figure 2.1: Estimated probability of occupancy of snowshoe hare across the current range
in Pennsylvania, 2004.

2.6

Importing dynamically downscaled global climate data

1. Below is some code for manipulating climate change data from the Regional Climate

Downscaling by copy the link into your browser:
http://regclim.coas.oregonstate.edu/data-access/index.html or just select the
link here: Regional Climate Downscaling. IMPORTANT: For each climate projection,
must change name in first command and file name in last command.

. Need to load a new library

library(ncdf)

. Open netCDF and setting verbose=true provides details about the data in the netcdf file

including the varid. You need to know the varid to select the variable you want to
extract/summarize. Note: the dimensions x, y, time also get a varid so you will need to
subtract 3 from the varid of interest to get the correct one.

dat <- open.ncdf ("Monthly_AvgMinTemp_1995-99_MPI.nc", write=TRUE,
readunlim=TRUE, verbose=TRUE)

Read data this loads all the data from the downloaded variable into the
tmin object

tmin <- dat$var[[1]]

tmin

HEHH R

The following illustrates how to read the data

HEHH AR

print(paste(tmin$name)) #in this case the ’field name’ is TAMIN

Grab data for TAMIN variable and place in object df1l
df1 <- get.var.ncdf(dat, tmin)

41

http://regclim.coas.oregonstate.edu/data-access/index.html

head(dfi1, n = 10L) # head(x, n = 6L, ...); head returns the first data entries,
#x is the object, n sets the
number of entries displayed. tail returns the last of the data entries

Dimensions of dfl (x, y, time)
dim(df1)

Dimensions can also be examined one at a time

dim(df1) [1] # number of x grids (36)

dim(df1) [2] # number of y grids (21)

dim(df1) [3] # number of months in file (49)

NOTE: FILE INCLUDES MONTHS OTHER THAN JANUARY (Jans are 1,13,25,37,49)

Check first element
df1[1,1,1]

Check first January for all x,y
afif(,,1]

Create a new matrix which is monthly averages for each grid cell. Make the new
#matix the same size (i.e. same number of rows and columns as there are in the
#dataframe df1

suml <- array(data=NA, c(dim(df1) [1],dim(df1)[2]))

dim(suml)

Create January mean TAMIN for each x-y coordinate

for(i in 1:dim(df1) [1]1){ # loop over x-coords

for(j in 1:dim(df1) [2]){ # loop over y-coords

sumi[i, j1 <- (df1[i,j,1]1+df1[i,j,131+df1[4,j,25]1+df1[i,],371+df1[1,j,491)/5
}

}

head(suml) ## useful for large files
suml

IR R R R R R R R R #
B
Create netcdf file from suml (contains matrix of new data)
B
Get x and y coordinates from original "dat" ncdf file

x = get.var.ncdf(nc=dat,varid="x"

y = get.var.ncdf(nc=dat,varid="y")

Check dimensions
length(x)
length(y)
dim(sum1)

define the netcdf coordinate variables - note that these are coming
#from the dat file with actual values
diml = dim.def.ncdf("X","meters", as.double(x))

42

dim2 = dim.def.ncdf("Y","meters", as.double(y))

define the EMPTY (climate) netcdf variable and define names that will
#be used in the var.def.ncdf function

Define climate variable names

new.name <- ’mintemp’

Define units of measurement for variable

units <- ’degreesC’

Define long name for variable

long.name <- ’Jan average min temperature’

varz = var.def.ncdf (new.name,units, list(diml,dim2), -1,
longname=long.name)

#associate the netcdf variable with a netcdf file
#put the variable into the file, and close

nc.ex = create.ncdf("MPI1999-95.nc", varz)

put.var.ncdf (nc.ex, varz, suml)
close.ncdf (nc.ex)

43

Chapter 3

Movement Methods

Contents
3.1 Importing datasets from a websource 45
3.2 Movement trajectories 0 o o e 45
3.3 Distance between locations. 000 000 48
3.4 First Passage Time (FPT)0t i it ittt ittt i e 51
3.5 Regular trajectories ¢ ¢ i i e e e e e e e e e e e e 57
Figures
3.1 Example of a trajectory created using adehabitatL'T for a mule deer in
Colorado. 54
3.2 Plot of a First Passage Time for a mule deer in Colorado identifying
mean FPT by month. 55
3.3 Summaries of distance and time (dt) between relocations for mule deer
DI6. . . 58
3.4 Bursts of movements for mule deer D15 after creating segements based
for focal use areas. 62

Movement methods can serve a variety of purposes from determining mean daily
distance moved by an animal to describing the scale at which an animal uses the landscape.
Understanding movements can often shed some light on how an animal uses the landscape
based on differences in turning angles and clustering of paths in each defined habitat type.
Trajectories can be created from relocations and are also the precursor to several home range
estimation methods we will go over later in the course.

Notes from the package AdehabitatLLT manual (Calenge 2012): Two types of
trajectories can be stored in objects of class ltraj: trajectories of type I correspond to
trajectories where the time of relocations is not recorded. It may be because it could not be
noted at the time of sampling (e.g. sampling of animals’ tracks in the snow) or because it was
decided that they did not want to take it into account, i.e. to study only its geometrical
properties. In this case, the variable date in each burst of the object contains a vector of
integer giving the order of the relocations in the trajectory (i.e. 1, 2, 3, ...). Trajectories of
type II correspond to trajectories for which the time is available for each relocation. It is
stored as a vector of class POSIXct in the column date of each burst of relocations. The type
of trajectory should be defined when the object of class ltraj is defined, with the argument
type II.

Concerning trajectories of type II, in theory, it is expected that the time lag between
two relocations is constant in all the bursts and all the ids of one object of class ltraj (i.e., do
not mix animals located every 10 minutes and animals located every day in the same object).
Indeed, some of the descriptive parameters of the trajectory do not have any sense when the
time lag varies. For example, the distribution of relative angles (angles between successive
moves) depends on a given time scale; the angle between two during 10-min moves of a
whitestork does not have the same biological rilzaning as the angle between two 1-day moves.

If the time lag varies, the underlying process varies too. For this reason, most functions of
adehabitatLT have been developed for "regular" trajectories, i.e. trajectories with a constant
time lag (see help(sett0)).

3.1

Importing datasets from a web source

Movebank.org is a new storage warehouse for relocation data from GPS-collared or
VHF-collared animals. It provides a storage facility in the cloud that can serve as a backup
for your data or a transfer portal to share data among colleagues or interested researchers.
Similar to any email account, each user has a Movebank account that has a login and
password to gain access to your data. Administration privileges can be given to anyone with

an account for viewing and downloading data.

1.
2.

3.2

Let’s go to the Movebank home page and explore what it has to offer
Of course we need to load the appropriate packages to gain access remotely

library(move)
library(RCurl)
library(circular)

Login to Movebank

login <- movebankLogin(username="wdwalter", password="xxxxxx")

. Access a stored dataset in Movebank of vulture data

getMovebankAnimals (study="Turkey Vulture South Carolina USA",login=login)

#Give the dataset a name while identifying each bird by ID in dataset
turkey <- getMovebankData(study="Turkey Vulture South Carolina USA",

animalName=c("Bird51","Bird52","Bird54","Bird55a","Bird56","Bird59a","Bird60a"),
login=login, moveObject=TRUE)

#Check to see the number of locations for each bird
n.locs (turkey)

Birdb51 Birdb52 Birdb4 Birdbba Bird56 Bird59a Bird60a
9655 11456 2378 2228 5876 8311 8594

Movement trajectories

We will start with simply creating trajectories between successive locations. As stated above,
there are 2 types of trajectories but their are also 2 forms of Type II trajectories if we have
time recorded. Depending on the duration between locations we can have uniform time lag
between successive relocations termed regular trajectories and non-uniform time lag that
results in irregular trajectories. We will begin this section with simply creating irregular
trajectories from relocation data because, even though we set up a time schedule to collection
locations at uniform times, climate, habitat, and satellites do not always permit such
schedules of data collection.

1.

Start by loading the appropriate packagis5 and data set

https://www.movebank.org/

library(adehabitatLT)
library(chron)
library(spatstat)#for "duplicate" function

#We are again going to be using the mule deer dataset from earlier exercises
muleys <-read.csv("DCmuleysedited.csv", header=T)
str(muleys)

. Check for duplicate locations in dataset. The reason for this is very important and will
be apparent shortly.

summary (duplicated (muleys))

#Sort data to address error in code if needed
#muleys <- muleys[order (muleys$id),]

. For trajectories of type I (time recorded), the conversion of the date to the format
POSIX needs to be done to get proper digits of date into R.

da <- as.POSIXct(strptime(muleys$GPSFixTime,format="%Y.%m.%d %H:%M:%S"))
head(da)

muleys$da <- da #attach "da" to muleys dataset

str(muleys)

#Create time lag between successive locations to censor data if needed.
timediff <- diff (muleys$da)

muleys <-muleys[-1,]

muleys$timediff <-as.numeric(abs(timediff))

str(muleys)#check to see timediff column was added to muleys

#Look at number of locations by animal ID
summary (muleys$id)

#Remove outlier locations or known outliers collected too far apart in time
newmuleys <-subset(muleys, muleys$X > 599000 & muleys$X < 705000
& muleys$Y > 4167000 & muleys$timediff < 14401)
muleys <- newmuleys
str (muleys)

. Let’s create a Spatial Points Data Frame in UTM zone 12 adding ID, time diff, burst to
xy coordinates

data.xy = muleys[c("X","Y")]

#Creates class Spatial Points for all locatioms

xysp <- SpatialPoints(data.xy)

#proj4string(xysp) <- CRS("+proj=utm +zone=12 +ellps=WGS84")

#Creates a Spatial Data Frame from
sppt<-data.frame(xysp)

#Creates a spatial data frame of ID
idsp<-data.frame(muleys[2])
#Creates a spatial data frame of dt
dtsp<-data.frame (muleys[24])

#Creates a spatial data frame of Burst
busp<-data.frame (muleys[23])

#Merges ID and Date into the same spatial data frame
merge<-data.frame(idsp,dtsp,busp)

#Adds ID and Date data frame with locations data frame
coordinates (merge) <-sppt

plot(merge)#visualize data
str (merge)

. Now create an object of class "ltraj" by animal using the ID field and display by each
individual (i.e., ltraj[1]).

ltraj <- as.ltraj(coordinates(merge) ,merge$da,id=merge$id)
plot(ltraj)

plot(1traj[1])

head(ltraj[1])#Describes the trajectory for the first deer

#> head(ltraj[1])#Describes the trajectory

frkkrokkkokkk List of class ltraj #kkkkkksokkk

#Type of the traject: Type II (time recorded)
#Irregular traject. Variable time lag between two locs

#

#Characteristics of the bursts:

id burst nb.reloc NAs date.begin date.end
#1 D12 D12 100 0 2011-10-12 06:00:52 2011-10-24 21:00:48
#

#infolocs provided. The following variables are available:
[1] "pkey“

plot(1traj[2])
plot(1traj[31)
plot(ltraj[4])
plot(1ltraj[5])
plot(ltraj[6])
plot(1traj[7])

. Let’s create a histogram of time lag (i.e., interval) and distance between successive
locations for each deer. This is a nice way to inspect the time lag between locations as
you don’t want to include a location if too much time has passed since the previous and
it also shows why a trajectory is irregular.

hist(ltraj[1], "dt", freq = TRUE)
windows ()#opens a new window to show both figures
hist(ltraj[1], "dist", freq = TRUE)

windows ()

hist(ltraj[2], "dt", freq = TRUE)
windows ()

hist(ltraj[2], "dist", freq = TRUE)
windows ()

47

hist(ltraj[3], "dt", freq = TRUE)
windows ()

hist(ltraj[3], "dist", freq = TRUE)
windows ()

hist(ltraj[4], "dt", freq = TRUE)
windows ()

hist(ltraj[4], "dist", freq = TRUE)
windows ()

hist(ltraj[5], "dt", freq = TRUE)
windows ()

hist(ltraj[5], "dist", freq = TRUE)
windows ()

hist(ltraj[6], "dt", freq = TRUE)
windows ()

hist(1traj[6], "dist", freq = TRUE)
windows ()

hist(ltraj[7], "dt", freq = TRUE)
windows ()
hist(ltraj[7], "dist", freq = TRUE)

3.3 Distance between locations

Determining the distance between locations or between locations and respective habitat types
can serve a variety of purposes. Several resource selection procedures require a description of
the daily movement distance of an animal to determine the habitat available to an animal or
when generating random locations around known locations. We will start here with a method
to determine the average distance moved by mule deer in Colorado in a study to determine
methods to alleviate depradation on sunflowers that have become a high commodity crop in
the area.

1. Start by loading the appropriate packages and data set

library(adehabitatLT)
library(chron)
library(class)
library(Rcmdr)

muleys <-read.csv("C:\\Walter\\WalterSpatialEcologyLab\\
SpatialEcologyCourse\\Chapter3\\Distance\\DCnuleysedited.csv", header=T)
str(muleys)

2. Code to subset dataset for an individual animal

muleyl5 <- subset(muleys, id=="D15")

str(muley1b)
summary <- table(muleyl5$UTM_Zone,muley15$id)
summary

muley15$id <- factor(muley15%$id)

#Sort data to address error in code and then look at first 10 records
of data to confirm

muleyl5 <- muleyl5[order (muley15$GPSFixTime),]
muley15[1:10,]#code displays the first 20 records

. Prepare data to create trajectories using the ltraj command in Adehabitat LT

HEHHHHAFHAEFHEH RS H R HAH RS H RS H AR RS R R

Example of a trajectory of type II (time recorded)

Conversion of the date to the format POSIX

#Needs to be done to get proper digits of date into R then POSIXct

#uses library(chron)

da <- as.character(muleyl15$GPSFixTime)

da <- as.POSIXct(strptime(muleyl5$GPSFixTime,format="%Y.%m.%d %H:%M:%S"))
head(da)

#Attach da to muleylb
muleyl5$da <- da

#Creates a column of time difference between each location
timediff <- diff (muleyl5$da)

muleyl5 <-muley15[-1,]

muleyl5$timediff <-as.numeric(abs(timediff))

str(muleyl5)

#Clean up muleylb5 for outliers

newmuleys <-subset(muleyl5, muley15$X > 599000 & muleyl5$X < 705000 &
muley158Y > 4167000 & muleyl5$timediff < 14401)

muleyl5 <- newmuleys

. Create a spatial data frame of locations for muley 15 for use in creating trajectories that
includes time difference between locations and dates in proper format (as.POSIXct)

data.xy = muleyl5[c("X","Y")]

#Creates class Spatial Points for all locatioms

xysp <- SpatialPoints(data.xy)

#proj4string(xysp) <- CRS("+proj=utm +zone=12 +ellps=WGS84")

#Creates a Spatial Data Frame from
sppt<-data.frame (xysp)

#Creates a spatial data frame of ID
idsp<-data.frame(muley15[2])

#Creates a spatial data frame of dt
dtsp<-data.frame(muley15[24])

#Creates a spatial data frame of Burst
busp<-data.frame(muley15[23])

#Merges ID and Date into the same spatial data frame
merge<-data.frame(idsp,dtsp,busp)

#Adds ID and Date data frame with locations data frame
coordinates(merge)<-sppt

plot (merge)
49

str(merge)
. Creation of an object of class "ltraj" for muley15 dataset

ltraj <- as.ltraj(coordinates(merge) ,merge$da,id=merge$id)
plot(ltraj)
1traj

#CAN BE USED TO REMOVE TIME FROM DATE IN GPSFIXTIME COLUMN if needed
#Date <- as.character(muleys$GPSFixTime)

#Date <- as.POSIXct(strptime(muleys$GPSFixTime,"%Y.%m.%d"))
#muleys$Date <- Date

#str(muleys)

. Need to create separate "bursts" for each trajectory based on the number of locations
collected each day. In our case it was 8 (i.e., locations collected every 3 hours during a
24-hour period).

We want to study the trajectory of the day at the scale

of the day. We define one trajectory per day. The trajectory should begin
at 22H00

The following function returns TRUE if the date is comprised between
06HOO and 23HOO (i.e. results in 3 locations/day bursts)

foo <- function(date) {

da <- as.POSIX1lt(date)

ho <- da$hour + da$min

return(ho>15.9&h0<23.9)

X

deer <- cutltraj(ltraj, "foo(date)", nextr = TRUE)

#Notice that the above code will remove 345 relocations that fall
#outside of your time criteria

#Warning message:

#In cutltraj(ltraj, "foo(date)", nextr = TRUE)

At least 3 relocations are needed for a burst

345 relocations have been deleted

deer
#Shows results of cutting the traj into individual bursts
#NOTE the "Irregular traject" line below because we will revisit this later!

Hrrkkkckokkkokk List of class ltraj skkskskskskkokkok

#Type of the traject: Type II (time recorded)
#Irregular traject. Variable time lag between two locs

#Characteristics of the bursts:

id burst nb.reloc NAs date.begin date.end
#1 D15 D15.001 6 0 2011-10-12 03:00:52 2011-10-12 18:00:52
#2 D15 D15.003 7 0 2011-10-13 00:00:35 2011-10-13 18:00:35
#3 D15 D15.005 7 0 2011-10-14 00:00:42 2011-10-14 18:00:42
#4 D15 D15.007 7 O

201%%}0_15 00:00:35 2011-10-15 18:00:45

#5 D15 D15.009 7 0 2011-10-16 00:00:39 2011-10-16 18:00:49
#6 D15 D15.011 6 0 2011-10-17 00:01:07 2011-10-17 15:01:03
#7 D15 D15.014 7 0 2011-10-18 00:00:34 2011-10-18 18:00:48
#8 D15 D15.016 7 0 2011-10-19 00:00:36 2011-10-19 18:00:40
#9 D15 D15.018 7 0 2011-10-20 00:00:53 2011-10-20 18:00:40
#10 D15 D15.020 7 0 2011-10-21 00:00:39 2011-10-21 18:00:37

7. Code to change ltraj to a data.frame to summarize distance between locations for each
daily burst

head (deer)
dfdeer <- 1ld(deer)
head(dfdeer)
str(dfdeer)
str(dfdeer)
’data.frame’: 2243 obs. of 13 variables:
$ x : num 677932 679037 679429 679750 679453 ...
$y : num 4189551 4189493 4189406 4189053 4188461
$ date : POSIXct, format: "2011-10-12 03:00:52" "2011-10-12 06:00:52"
$ dx : num 1105 392 321 -297 163 ...
$ dy : num -58 -87 -353 -592 -89 NA -189 756 395 95 ...
$ dist : num 1107 402 477 662 186 ...
$ dt : num 10800 10786 10796 10808 10810 ...
$ R2n : num 0 1224389 2262034 3553128 3501541
$ abs.angle: num -0.0524 -0.2184 -0.8328 -2.0358 -0.4998 ...
$ rel.angle: num NA -0.166 -0.614 -1.203 1.536 ...
$ id : Factor w/ 1 level "D15": 1111111111
$ burst : Factor w/ 325 levels "D15.001","D15.003",..: 1 11111 2
$ pkey : Factor w/ 2588 levels "D15.2011-10-12 03:00:52",..: 1

#Code to get mean distance moved for each burst

library(Rcmdr)

summary <- numSummary(dfdeer[,"dist"],groups=dfdeer$burst, statistics=
c ("meanll s "Sd“))

summary

#Convert matrix from data.frame to a matrix to export as a .csv file
mean <- as.matrix(summary$table)

#Write.table gives csv output of Summary. Be sure to specify the directory
and the output files will be stored there

write.table(mean, file = "Distance.csv", sep =",", row.names = TRUE,
col.names = TRUE, gmethod ="double")

3.4 First Passage Time (FPT)

The first passage time (FPT) is a parameter often used to describe the scale at which patterns
occur in a trajectory. For a given scale r, it is defined as the time required by the animals to
pass through a circle of radius r. The mean first passage time scales proportionately to the
square of the radius of the circle for an uncorrelated random walk (Johnson et al. 1992).

Johnson et al. (1992) used this property to differenciate facilitated diffusion and impeded
diffusion, according to the value of the coefficient of the linear regression log(FPT) = a *
log(radius) 4+ b. Under the hypothesis of a random walk, a should be equal to 2 (higher for
impeded diffusion, and lower for facilitated diffusion). Note however, that the value of a
converges to 2 only for large values of radius. Another use of the FPT was proposed that,
instead of computing the mean of FPT, use the variance of the log(FPT). This variance
should be high for scales at which patterns occur in the trajectory, e.g. area restricted search
(Fauchald and Tverra 2003). This method is often used to determine the scale at which an
animal seaches for food.

The value fpt computes the FPT for each relocation and each radius, and for each
animals. This function returns an object of class "fipati’, i.e. a list with one component per
animal. Each component is a data frame with each column corresponding to a value of radii
and each row corresponding to a relocation. An object of class fipati has an attribute named
'radii" corresponding to the argument radii of the function fpt. meanfpt and varlogfpt return
a data frame giving respectively the mean FPT and the variance of the log(FPT) for each
animal (rows) and rach radius (column). These objects also have an attribute "radii".

1. Begin by loading the proper library for FPT and the dataset. In this example we are
going to look at mule deer in southwestern Colorado. We can eliminate poor locations in
the original dataset or code can be used after examining the data.

library(adehabitatLT)

library(chron)

library(sp)

library(rgdal)

muleys <-read.csv("DCmuleysedited.csv", header=T)

#Code to look at number of relocations per animal
summary <- table(muleys$id)
summary

B
Example of a trajectory of type II (time recorded) ##that must be converted
to the format POSIX that needs to be done to get proper digits of date for
use with the adehabitatLT package
B s
da <- as.character(muleys$GPSFixTime)

da <- as.POSIXct(strptime(muleys$GPSFixTime,format="%Y.%m.%d %H:%M:%S"))
muleys$da <- da

2. Determine the time difference between each relocation for use later

timediff <- diff (muleys$da)
muleys <-muleys[-1,]
muleys$timediff <-as.numeric(abs(timediff))

3. Code to remove known outlier locations if needed

newmuleys <-subset(muleys, muleys$X > 599000 & muleys$X < 705000 &
muleys$Y > 4167000 & muleys$timediff < 14401)
muleys <- newmuleys

4. Create the spatial data from of xy coordinates and additional information

data.xy = muleys[c("X","Y")] -

#Creates class Spatial Points for all locatioms

xysp <- SpatialPoints(data.xy)

#proj4string(xysp) <- CRS("+proj=utm +zone=17 +ellps=WGS84")
#Creates a Spatial Data Frame from
sppt<-data.frame (xysp)

#Creates a spatial data frame of ID
idsp<-data.frame(muleys[2])

#Creates a spatial data frame of dt

dtsp<-data.frame (muleys[24])

#Creates a spatial data frame of Burst
busp<-data.frame(muleys[25])

#Merges ID and Date into the same spatial data frame
merge<-data.frame(idsp,dtsp,busp)

#Adds ID and Date data frame with locations data frame
coordinates (merge) <-sppt

plot(merge)

str (merge)

. Create an object of class "ltraj" (i.e., trajectory) for all animals

ltraj <- as.ltraj(coordinates(merge) ,merge$da,id=merge$id)
plot(ltraj)

#0r we can plot trajectories for each specific animal

plot(1traj[1])
plot(1traj[2])
plot(1traj[31)
plot(1traj[4])
plot(1traj[5])
plot(ltraj[6])
plot(1traj[7])

. Code to plot histograms of distance distribution for each deer

windows ()
hist(ltraj[1], "dist", freq = FALSE)
windows ()
hist(ltraj[2], "dist", freq = FALSE)
windows ()
hist(ltraj[3], "dist", freq = FALSE)
windows ()
hist(ltraj[4], "dist", freq = FALSE)
windows ()
hist(ltraj[5], "dist", freq = FALSE)
windows ()
hist(ltraj[6], "dist", freq = FALSE)
windows ()

hist(ltraj[7], "dist", freq = FALSE)
. Code below actually creates First Passage Time and mean and variance of fpt

lot(1ltraj[1])
p J 53

4188000 4190000 4192000
|] |

4186000
|

4184000
|

T T T | T |
682000 6584000 686000 688000 690000 692000

Figure 3.1: Example of a trajectory created using adehabitatLT for a mule deer in Col-
orado.

i1 <- fpt(ltraj[1]l, seq(300,1000, length=30))
plot(il, scale = 200, warn = FALSE)

plot(1traj[2])
i2 <- fpt(ltraj[2], seq(300,1000, length=30))
plot(i2, scale = 500, warn = FALSE)

toto2 <- meanfpt(i2)
toto2
attr(toto2, "radii")

toto2 <- varlogfpt(i2)
toto2
attr(toto2, "radii")

plot(1traj[31)
i3 <- fpt(1ltraj[3], seq(300,1000, length=30))
plot(i3, scale = 500, warn = FALSE)

toto3 <- meanfpt(i3)
toto3
attr(toto3, "radii")

toto3 <- varlogfpt(i3)
toto3

attr(toto3, "radii")
54

Be+05
I

FPT
4e+05
I

2e+05
|

0e+00
I

attr(u, "date")

Figure 3.2: Plot of a First Passage Time for a mule deer in Colorado identifying mean
FPT by month.

plot(ltraj[4])
i4 <- fpt(ltraj[4], seq(300,1000, length=30))
plot(i4, scale = 500, warn = FALSE)

toto4 <- meanfpt(i4)
toto4d
attr(toto4, "radii")

toto4d <- varlogfpt(i4)
toto4
attr(totod4, "radii")

plot(1ltraj[5])
i56 <- fpt(1ltraj[5], seq(300,1000, length=30))
plot(ib, scale = 500, warn = FALSE)

toto5 <- meanfpt(ib)
totob
attr(toto5, "radii")

toto5 <- varlogfpt(ib)
totob
attr(toto5, "radii")

plot(ltraj[6])
i6 <- fpt(ltraj[6], seq(300,1000, &fngth=30))

plot(i6, scale = 500, warn = FALSE)

plot(1traj[7])
i7 <- fpt(ltraj[7], seq(300,1000, length=30))
plot(i7, scale = 500, warn = FALSE)

toto7 <- meanfpt(i7)
toto7
attr(toto7, "radii")

toto7 <- varlogfpt(i7)
toto7
attr(toto7, "radii")

is.regular(ltraj[1])
plotltr(1ltraj[1], "dt")
windows ()
plotltr(ltraj[1], "dist")

is.regular(ltraj[2])
plotltr(ltraj[2], "dt")
windows ()
plotltr(ltraj[2], "dist")
ltraj[2]

. Code to export each trajectory as a shapefile if needed

totol <-ltraj2sldf(ltrajl[1])

plot(totol)

writeOGR(totol,dsn=".",layer="D12", driver = "ESRI Shapefile",overwrite=TRUE)
summary (totol)

#If we want to define projection before making a shapefile
proj4string <- CRS("+proj=utm +zone=13N +ellps=WGS84")
toto2lines@proj4string <- proj4string
toto2pts@projé4string <- projé4string

#Write lines and points as a shapefile
toto2lines <-1ltraj2sldf (ltraj[2],byid=TRUE)
toto2pts <- ltraj2spdf (ltrajl[2])

plot (toto2pts)
plot(toto2lines, add=T)

writeOGR(toto2pts,dsn=".",layer="D15pts", driver = "ESRI Shapefile",
overwrite_layer=TRUE)

writeOGR(toto2lines, dsn=".", paste("traj_line_",sep=""),driver = "ESRI Shapefile",
overwrite=TRUE)

toto3 <-ltraj2sldf(ltraj[3])

plot(toto3)

writeOGR(toto3,dsn=".", layer="D16", driver = "ESRI Shapefile",overwrite=TRUE)
56

toto4 <-ltraj2sldf(ltrajl[4])
plot(toto4d)
writeOGR(toto4,dsn=".", layer="D19", driver = "ESRI Shapefile",overwrite=TRUE)

totob <-ltraj2sldf(ltrajl[5])
plot(totob)
writeOGR(totob,dsn=".", layer="D4", driver = "ESRI Shapefile",overwrite=TRUE)

toto6 <-ltraj2sldf(ltraj[6])
plot(toto6)
writeOGR(toto6,dsn=".", layer="D6", driver

"ESRI Shapefile",overwrite=TRUE)

toto7 <-ltraj2sldf(ltrajl[7])
plot(toto7)
writeOGR(toto7,dsn=".", layer="D8", driver

"ESRI Shapefile",overwrite=TRUE)

9. Another look at the time and distance between relocations of each animal. If GPS
collars are programmed to collect 1 locations per 24 hours or a location every 4 hours,
what would we expect Figure 3.3b to look like? The code can be used to produce these
figures and can be used initially to inspect the data if there is concern about consistancy
in location fixes or distance between each location.

is.regular(ltraj[3])
plotltr(1ltraj[3], "dt")
plotltr(ltraj[3], "dist")

3.5 Regular trajectories

muleys <-read.csv("C:\\Walter\\WalterSpatialEcologyLab\\SpatialEcologyCourse\\
Chapter3\\Distance\\DCnuleysedited.csv", header=T)
str(muleys)

#CODE FOR AN INDIVIDUAL ANIMAL

muleylb <- subset(muleys, id=="D15")
str(muleyl15)

summary <- table(muleyl15$UTM_Zone,muley15$id)
summary

muley15$id

#muley15$DT <-as.POSIXct(strptime(muleyl15$GPSFixTime, format=’%Y.%m.%d %H:%M:%0S’))
#muley15$DT

#Sort data to address error in code

muleyl5 <- muleyl5[order(muleyl5$GPSFixTime),]

muley15[1:10,]#code displays the first 10 records to look at what sorting did to data
str(muleyl15)

HAFHAFHAHBHHAFHAHHAHBHHBHHAH R H RS HBH R AR RS R B H AR H

#i#

Example of a trajectory of type II (time recorded)
57

o| d
8 - e b
o 5 -
Q
3]
u}
= I
=}
5]
o
o |
o
¥ D
Q
o+
“'n‘ nim
o 1 A
73
a4
Ly
o
o
Q
™
[a]
=]
o -
Q2 Q
o Lo
o
prrd
o -
| [| | |

Nov Jan Mar May i Nov Jan Nt May Wi

fire Time

Figure 3.3: Summaries of distance and time (dt) between relocations for mule deer D16.

Conversion of the date to the format POSIX

#Needs to be done to get proper digits of date into R then POSIXct
library(chron)

da <- as.character(muleyl5$GPSFixTime)

da <- as.POSIXct(strptime(muleyl5$GPSFixTime,format="%Y.%m.%d %H:%M:%S"))
muleyl5$da <- da

timediff <- diff (muleyl5$da)

muleyl5 <-muley15[-1,]

muleyl5$timediff <-as.numeric(abs(timediff))
str(muleyl15)

newmuleys <-subset(muleyl5, muley15$X > 599000 & muley15$X < 705000 &
muley158Y > 4167000 & muleyl5$timediff < 14401)
muleyl5 <- newmuleys

data.xy = muleyl5[c("X","Y")]

#Creates class Spatial Points for all locations

xysp <- SpatialPoints(data.xy)

#proj4string(xysp) <- CRS("+proj=utm +zone=17 +ellps=WGS84")

o8

#Creates a Spatial Data Frame from
sppt<-data.frame(xysp)

#Creates a spatial data frame of ID
idsp<-data.frame(muley15[2])

#Creates a spatial data frame of dt

dtsp<-data.frame (muley15[24])

#Creates a spatial data frame of Burst
busp<-data.frame (muley15[23])

#Merges ID and Date into the same spatial data frame
merge<-data.frame(idsp,dtsp,busp)

#Adds ID and Date data frame with locations data frame
coordinates (merge)<-sppt

plot(merge)

str(merge)

Creation of an object of class "ltraj"

ltraj <- as.ltraj(coordinates(merge) ,merge$da,id=merge$id)
plot(ltraj)

ltraj

#CAN BE USED TO REMOVE TIME FROM DATE IN GPSFIXTIME COLUMN
#Date <- as.character(muleys$GPSFixTime)

#Date <- as.POSIXct(strptime(muleys$GPSFixTime,"%Y.%m.%d"))
#muleys$Date <- Date

#str(muleys)

We want to study the trajectory of the day at the scale

of the day. We define one trajectory per day. The trajectory should begin
at 22H00

The following function returns TRUE if the date is comprised between
O06HOO0 and 23HOO (i.e. results in 3 locations/day bursts)

foo <- function(date) {

da <- as.P0SIX1lt(date)

ho <- da$hour + da$min

return(ho>15.94&h0<23.9)

+

deer <- cutltraj(ltraj, "foo(date)", nextr = TRUE)

deer

Remove the first and last burst if needed?

#deer2 <- deer[-c(1,length(deer))]

#bind the trajectories
deer3 <- bindltraj(deer)
deer3

plot(deer3)
is.regular(deer)

FALSE

plotltr(deer3, "dist")

The relocations have been collected every 3 hours, and there are some
missing data

29

The reference date: the hour should be exact (i.e. minutes=0):

refda <- strptime("00:00", "Y%H:%M")

refda

Set the missing values

deerset <- setNA(deer3, refda, 3, units =
now, look at dt for the bursts:
plotltr(deerset, "dt")

dt is nearly regular: round the date:
deersetl <- settO(deerset, refda, 3, units =
plotltr(deersetl, "dt")

is.regular(deersetl)

deersetl is now regular

|Ihourll)

"hour“)

Is the resulting object "sd" 7
is.sd(deersetl)

Show the changes in the distance between
successive relocations with the time
windows ()

plotltr(deersetl, "dist")

Segmentation of the trajectory based on these distances
lav <- lavielle(deersetl, Lmin=2, Kmax=20)
Choose the number of segments
chooseseg(lav)

20 segments seem a good choice

Show the partition

kk <- findpath(lav, 20)

kk

##Results of code
fkkkokkkkkkk List of class ltraj skkkkkokkkkx

#Type of the traject: Type II (time recorded)
#Regular traject. Time lag between two locs: 10800 seconds

#Characteristics of the bursts:

id burst nb.reloc NAs date.begin

#1 D15 Segment.1 199 27 2011-10-12 04:00:00 2011-11-05
#2 D15 Segment.2 2 0 2011-11-06 01:00:00 2011-11-06
#3 D15 Segment.3 455 64 2011-11-06 06:00:00 2012-01-02
#4 D15 Segment.4 1 0 2012-01-02 03:00:00 2012-01-02
#5 D15 Segment.5 2 0 2012-01-02 06:00:00 2012-01-02
#6 D15 Segment.6 1 0 2012-01-02 12:00:00 2012-01-02
#7 D15 Segment.7 64 8 2012-01-02 15:00:00 2012-01-10
#8 D15 Segment.8 3 1 2012-01-10 15:00:00 2012-01-10
#9 D15 Segment.9 2 0 2012-01-11 00:00:00 2012-01-11
#10 D15 Segment.10 33 4 2012-01-11 06:00:00 2012-01-15
#11 D15 Segment.11 5 1 2012-01-15 09:00:00 2012-01-15
#12 D15 Segment.12 3 0 2012-01-16 00:00:00 2012-01-16
#13 D15 Segment.13 2 0 2012-01-16 09:00:00 2012-01-16
#14 D15 Segment.14 336 46 2012-01-16 15:00:00 2012-02-27

60

date.end

22:
03:
00:
03:
09:
12:
12:
21:
03:
06:
21:
06:
12:
12:

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

00
00
00
00
00
00
00
00
00
00
00
00
00
00

#15
#16
#17
#18
#19
#20

D15
D15
D15
D15
D15
D15

#Notice

Segment.
Segment .
Segment.
Segment.
Segment.
Segment.

15
16
17
18
19
20

4 1
250 35
1 0

5 2
1164 154
63 9

(1) number of relocations
(2) number of relocations removed (i.e., NA)

(3) begin and end dates

2012-02-27
2012-02-28
2012-03-30
2012-03-30
2012-03-31
2012-08-23

15:
03:
10:
13:
04:
16:

that the results show for each burst:

00:
00:
00:
00:
00:
00:

00
00
00
00
00
00

2012-02-28
2012-03-30
2012-03-30
2012-03-31
2012-08-23
2012-08-31

00:
07:
10:
01:
13:
10:

00:
00:
00:
00:
00:
00:

Now if we reduce the number of segments we get the following bursts:

Segmentation of the trajectory based on these distances
lav <- lavielle(deersetl, Lmin=2, Kmax=10)

Choose the number of segments

chooseseg(lav)
20 segments seem a good choice

Show the partition
kk <- findpath(lav, 10)

kk

kxkkkkkkkkxkx*kx [,igt of class ltraj >k >k >k >k 3k 3k 3k >k >k 5k 5k

#Type of the traject: Type II (time recorded)
#Regular traject. Time lag between two locs: 10800 seconds

#Characteristics of the bursts:

id
#1 D15
#2 D15
#3 D15
#4 D15
#5 D15
#6 D15
#7 D15
#8 D15
#9 D15
#10 D15

burst nb.reloc NAs

Segment .1
Segment .2
Segment .3
Segment .4
Segment .5
Segment .6
Segment .7
Segment .8
Segment .9
Segment .10

201 27
456 64
2 0

1 0
102 13
10 1
591 82
5 2
1164 154
63 9

#We can look at each segment to

plot(kk[1])
plot(kk[2])
plot(kk[3])
plot (kk[6])
plot (kk[7])
plot (kk[9])

date.
04:
06:
06:
12:
15:
09:
15:
13:
04:
16:

2011-10-12
2011-11-06
2012-01-02
2012-01-02
2012-01-02
2012-01-15
2012-01-16
2012-03-30
2012-03-31
2012-08-23

begin

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

inspect the path

61

00
00
00
00
00
00
00
00
00
00

2011-11-06
2012-01-02
2012-01-02
2012-01-02
2012-01-15
2012-01-16
2012-03-30
2012-03-31
2012-08-23
2012-08-31

00
00
00
00
00
00

date.end

03:
03:
09:
12:
06:
12:
10:
01:
13:
10:

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

traveled during the

00
00
00
00
00
00
00
00
00
00

burst:

4192000

Burst 1 | - Burst 7
201 locations ! 591 |ocations

4188000 4120000
1 L

4186000
1

T T T T T T T T T T T T T T T
674000 675000 676000 677000 678000 679000 ©B0000 681000 670000 672000 674000 676000 678000 680000 682000

Figure 3.4: Bursts of movements for mule deer D15 after creating segements based for
focal use areas.

62

Chapter 4

Home Range Estimation

Contents
4.1 Kernel Density Estimation (KDE) with reference bandwidth selection
(Bpgf) = o v e e e e e e e e e 64
4.2 KDE with least-squares cross validation bandwidth selection (hy.,) .. 66
4.3 KDE with plug-in bandwidth selection (hplug-in) 68
4.4 Brownian Bridge Movement Models (BBMM) 74
4.5 Movement-based Kernel Density Estimation (MKDE) 81
4.6 Dynamic Brownian Bridge Movement Model (d(BBMM) 92
4.7 Characteristic Hull Polygons (CHP) 96
4.8 Local Convex Hull (LoCoH) v it iii it 99
4.9 Minimum Convex Polygon (MCP) i i vt ii vt 106
Figures
4.1 Example of KDE with hplug—m smoothing parameter to estimate size
of home range for an American White Pelican. 71
4.2 Example of 95% BBMM home range for a Florida Panther. 75
4.3 Example of 95% KDE home range with hplug—z’n for a Florida Panther.. 76
4.4 Example of 95% KDE home range with href for a Florida Panther. ... 76
4.5 This figure shows how to summarize size of home range in ArcMap. . . . 78
4.6 Home range of one panther using BBMM showing all contours. 79
4.7 Home range using BBMM for panther 110 with various time lags incor-
porated. 81
4.8 Locations of one vulture in UTM 17N. 83
4.9 Imported habitat layer in Albers Equal Area Conic Projection. 84
4.10 Imported habitat layer projected to UTM Zone 17N similar to vulture
locations. 85
4.11 Overlay of ltraj on spixdf=habitat in UTM Zone 17N. 85
4.12 Imported raster dataset showing coastline and tributaries. 86
4.13 Movement paths of two Black Vultures with a similar extent. 88
4.14 Red identifies ocean and tributaries not used by vultures.. 89
4.15 Contours of home range for 2 black vultures estimated using the Movement-
based kernel density method (MKDE) 91
4.16 Contours of home range for a mule deer estimated using the dynamic
Brownian Bridge Movement Model (dABBMM). 97
4.17 Example of CHP home range for 2 Florida panther. 98
418 The LoCoH GUIL 100
4.19 Example of 95% estimate of home range for a Florida Panther using
LoCoH with Fixed K = 1,000.. 102
4.20 Example of 95% estimate of home range for a Florida Panther using
LoCoH with Fixed R = 1,000.. 103
4.21 Example of 95% KDE estimate of home range for a Florida Panther

using LoCoH with Adaptive = 1,(()3%0. 104

4.22 Example of 95% KDE estimate of home range for a Florida Panther

using LoCoH with Adaptive = 10,000. 105
4.23 Example of 95% estimate of home range for mule deer using Minimum

Convex Polygon.. 107
4.24 Example of 95% estimate of home range for mule deer using Minimum

Convex Polygon with relocations overlayed. 108

4.1 Kernel Density Estimation (KDE) with reference bandwidth selection
(href)

In KDE, a kernel distribution (i.e. a three-dimensional hill or kernel) is placed on each
telemetry location. The height of the hill is determined by the bandwidth of the distribution,
and many distributions and methods are available (e.g. fixed versus adaptive, univariate
versus bivariate bandwidth). We will focus here on "fixed kernel" but will alter the bandwidth
selection. Datasets for avian and mammalian species can include as many as 10,000 locations
and only the reference or default bandwidth (href) was able to produce KDE in both Home
Range Tools and adehabitat or adehabitatHR (Calenge 2007, 2011). Estimation with (href)
typically is not reliable for use on multimodal datasets because it results in over-smoothing of
home ranges and multimodal distribution of locations is typical for most species (Worton
1995, Seaman et al. 1999).

1. Remember to Select File-Change dir... and load libraries. Select folder that you are
working in that includes your dataset or incorporate it within code
setwd("C:\\Walter\\WalterSpatialEcologyLab\\SpatialEcologyCourse
\\Chapter4\\Href")\\
load libraries
library(adehabitat)

NOTE: adehabitatHR package requires Spatial Points instead of data frame
so code below will not work if adehabitatHR is also loaded

library(sp)

library(rgdal)

library(raster)

2. We will name this file "temp" then bring our dataset into R using:
temp <- read.csv("C:\\Walter\\WalterSpatialEcologyLab\\
SpatialEcologyCourse\\Chapter4\\Href\\Al11HRlocs.csv", header=T)

3. Now we can run fixed kernel home range with href bandwidth selection
#Need to identify UTM coordinates X and Y
loc <- temp[, c("x", "y")]
#Define individual panther ID for batch processing
id <- temp[, "id"]
Now run home ranges
kernelUD(loc, id = NULL, h = "href", grid = 40, same4all = FALSE,
hlim = ¢c(0.1, 1.5), kern = c("bivnorm"), extent = 0.5)
Estimation of UD for all animals
(ud <- kernelUD(loc, id))
image(ud) ## Note that the locations pop up in new screen

4. Calculation of the 95 percent home range

ver <- getverticeshr(ud, 95) 64

plot(ver, add=TRUE)

legend (696500, 3166000, legend = names(ver), fill = rainbow(4))
Example of estimation using Href

udbis <- kernelUD(loc, id, h = "Href")

image (udbis)

. We estimated size of home range using href now we need to
output the size of these home ranges that were estimated

#Lists estimates of size of home range with Href in hectares
(cuicuil <- kermel.area(loc, id))
plot(cuicuil) #Plots of size in relation to percent contour

#Results for 4 animals by probability contour (i.e., 20$-$95 percent)

Contour FP048 FP094 FP110 FP113

20 1088.716 2637.329 1085.715 522.7297
25 1451.621 3439.490 1472.156 676.4737
30 1918.213 4398.036 1895.401 840.4674
35 2384.806 5469.3563 2355.450 1004.4610
40 3006.929 6653.440 2833.901 1188.9539
45 3680.896 7950.296 3349.156 1393.9459
50 4562.237 9472.694 3919.616 1609.1876
55 5547.265 11220.631 4545.283 1844.9284
60 6635.981 13137.724 5244.557 2111.4181
65 7880.227 15336.742 6035.841 2398.4069
70 9435.535 17761.301 6974.341 2726.3942
75 11198.218 20467.784 8078.458 3126.1287
80 13271.962 23568.964 9421.801 3597.6104
85 16812.298 27121.224 11022.771 4212.5865
90 19130.288 31575.645 13194.202 5032.5547
95 24055.430 38172.700 16782.583 6272.7566

. We can export these estimates with the previous code
write.table(cuicuil,"C:\\Walter\\WalterSpatialEcologyLab\\
SpatialEcologyCourse\\Chapter3\\Href\\output.csv", row.names=TRUE,
sep=" ", col.names=TRUE, quote=TRUE, na = "NA")

. We can also output the respective shapefiles with code below:

H#H#HHH
OVERRIDE the default kver2spol function so that we
#can include the projection info

HEH#HHH
kver2spol <- function(kv,projstr){
x <- kv

if (!inherits(x, "kver"))
stop("x should be of class \"kver\"")
if ('require(sp))
stop("sp package needed")
lipols <- lapply(l:length(x), function(i) {
y <= x[[i]]
class(y) <- c("data.frame", "list")
res <- split(y[, 2:31, y[, 11)
lipol <- lapply(res, funcﬁi?n(z) {

if (sum(abs(z[1,] - z[nrow(z), 1)) > 1le-16)
z <- rbind(z, z[1, 1)
Polygon(as.matrix(z))

b
pols <- Polygons(lipol, ID = names(x)[i])
return(pols)
b
return(SpatialPolygons(lipols, proj4string=CRS(as.character(projstr))))}
HAHBHHAHHAH RS
Function to export specific levels of isopleths of a "kv" object
HAHBHHBHHAH RS

#Code creates contours only for animal 1 at each level so need to repeat for
#each animal if needed

kv<-list ()

class(kv) <- "kver"

kvtmp <- getverticeshr(udbis, lev = 99)
kv$KHR99<- kvtmp[[1]]
kvtmp <- getverticeshr(udbis, lev = 95)
kv$KHRO5<- kvtmp[[1]]
kvtmp <- getverticeshr(udbis, lev = 90)
kv$KHRI0<- kvtmp[[1]]
kvtmp <- getverticeshr(udbis, lev = 75)
kv$KHR75<- kvtmp[[1]]
kvtmp <- getverticeshr(udbis, lev = 50)
kv$KHR50<- kvtmp[[1]]
kvtmp <- getverticeshr(udbis, lev = 25)
kv$KHR25<- kvtmp[[1]]

spolTmp <- kver2spol(kv,"+proj=utm +zone=17N +ellps=WGS84")

dfTmp <- data.frame(Isopleth=c("99","95","90","75","50","25"),
row.names=c ("KHR99", "KHR95" , "KHROO" , "KHR75" , "KHR50" , "KHR25"))
spdfTmp <- SpatialPolygonsDataFrame(spolTmp, dfTmp, match.ID = TRUE)
writeOGR (spdfTmp, "HREF", "FPO48HREF", "ESRI Shapefile")

4.2 KDE with least-squares cross validation bandwidth selection
(hisev)

Both the least squares cross-validation (hy,.,) and bias crossed validation (hy,.,) have been
suggested instead of href in attempts to prevent over-smoothing of KDE (Rodgers and Kie
2010). However, (hy,,.,,) and (hp,,) have been minimally evaluated on GPS datasets because
previous literature only evaluated datasets collected on VHF sampling protocols or simulated
data that included at most 1,000 locations. Least-squares cross validation, suggested as the
most reliable bandwidth for KDE was considered better than plug-in bandwidth selection
(hplug—in; for description see section 3.3) at identifying distributions with tight clumps but
risk of failure increases with hg., when a distribution has a “very tight cluster of points”
(Gitzen etal.2006,Peﬂerhletal.2008,VVaReEém al. 2011).

1. In same folder we will calculate home range only on the animal
identified as Cat048 and we wiill run fixed kernel with h, .,
Remember to Select File-Change dir....
NOTE: Alternatively, we can use id=048 instead of idl=NULL to only run home
range on only panther 048

2. We will name this file "cat048"
Then bring our dataset into R using:
cat048 <- read.csv("C:\\Walter\\WalterSpatialEcologyLab\\
SpatialEcologyCourse\\Chapter4\\Href\\Cat048HR.csv", header=T)

3. Now we can run fixed kernel home range with hy,.,, bandwidth selection
#Need to identify UTM coordinates X and Y
loc <- datal, c("x", "y")]
Now run home ranges
kernelUD(loc, h = "lscv", grid = 40, same4all = FALSE,
hlim = c(0.1, 1.5), kern = c("bivnorm"), extent = 0.5)
Estimation of UD for cat048
(ud <- kernelUD(loc))
image(ud) ## Note that the locations pop up in new screen

After running cat048 with 10,732 locations some very important
text may be overlooked but needs to be addressed! It reads:

Warning message:
In kernelUD(loc, h = "LSCV") : The algorithm did not converge
within the specified range of hlim: try to increase it

4. Calculation of the 95 percent home range contour
ver <- getverticeshr(ud, 95)
plot(ver, add=TRUE)
legend (696500, 3166000, legend = names(ver), fill = rainbow(4))
Example of estimation using Hlscv
udbis <- kernelUD(loc, h = "LSCV")
image (udbis)
(cuicui2 <- kermel.area(loc, id, h = "LSCV")) ## LSCV
plot(cuicui2)

Contour FP048

20 362.90562
25 466.5924
30 622.1232
35 829.4976
40 1036.8720
45 1244 .2464
50 1555.3080
55 1866.3696
60 2281.1184
65 2747.7108
70 3266.1468
75 3940.1136
80 4769.6112
85 6013.8576
90 8139.4452

67

95 15604.9236

Warning message:

In kernelUD(xy, id, h, grid, same4all, hlim, kern, extent):
The algorithm did not converge within the specified range of
hlim: try to increase it

4.3 KDE with plug-in bandwidth selection (hplug-in)

Using hplug—z’n in ks, we were able to calculate KDEs for the sample GPS datasets on 3 avian
species and 2 mammalian species where first generation methods (hy,.,,) failed or generated a
considerably over-smoothed KDE (href)' While home range polygons generated with hplug—in
appeared fragmented, they may be appropriate when studying a species in highly fragmented
landscapes such as urban areas. Based on our results and previous research, conclusions
presented in Loader 1999 should be re-evaluated for analyses of large GPS dataset because
sample size and clumping of locations has consistently failed using hg..,,, while estimates using
hplug—in converged for large multimodal datasets and resulted in reasonable estimates (Girard

et al. 2002, Amstrup et al. 2004, Gitzen et al. 2006).

1. Now we can calculate home range on several pelicans

using KDE with hplug—in

2. First we need to install packages needed to estimate home ranges
install.packages(c("gpclib","aded","adehabitat","shapefiles",
"ks","rgdal","maptools","PBSmapping"))
#Then load the libraries from these packages

library (ks)
library(rgdal)
library(maptools)
library(gpclib)
library(PBSmapping)

3. We will use an abbreviated dataset to save processing time
and the code will also output shapefiles of home ranges
get input file
indata <- read.csv("C:\\Walter\\WalterSpatialEcologyLab\\
SpatialEcologyCourse\\Chapter4\\Hplugin\\Pelicans\\WhitelOpelicans.csv")
innames <- unique(indata$ID)
innames <- innames[1:5]
outnames <- innames

4. We then want to set up a table to output estimates of size of home ranges
set up output table
output <- as.data.frame(matrix(0,nrow=length(innames),ncol=9))
colnames (output) <- c("ID","noFixes","h11","h12","h21", 6 "h22",

"isob0areaKm", "iso95areaKm", "iso99areaKm")

NOTE: the h followed by a number are outputs from the hplu g-in for the
bandwidth matrix estimated for each animal. They are in there for reference
but don’t really need them.

5. We also need to tell R which contours to output
set up levels for home range

68

levels <- c(50,95,99)
. Set up a directory to place the resulting shapefiles

set up output directory for shp files
dir <- "C:\\Walter\\WalterSpatialEcologyLab\\SpatialEcologyCourse\\
Chapter4\\Hplugin\\Pelicans\\"
dirout <- "C:\\Walter\\WalterSpatialEcologyLab\\SpatialEcologyCourse\\
Chapter4\\Hplugin\\Pelicans\\output"
begin loop to calculate home ranges
for (i in 1:length(innames)){
data <- indatal[which(indata$ID==innames([i]),]
if (dim(data) [1] != 0){
export the point data into a shp file
data.xy = datal[c("Longitude", "Latitude")]
coordinates (data.xy) <- ~Longitude+Latitude
sppt <- SpatialPointsDataFrame(coordinates(data.xy),data)
proj4string(sppt) <- CRS("+proj=longlat +ellps=WGS84")
writePointsShape (sppt,fn=paste(dir,outnames[i],sep="/"),
factor2char=TRUE)
start populating output table by column heading "pelicanID"
output$pelicanID[i] <- data$ID[1]
output$noFixes[i] <- dim(data) [1]
locs <- cbind(data$Longitude,data$latitude)
try(HpiOut <- Hpi(locs,pilot="samse",binned=TRUE))
if (is.null (HpiOut)=="FALSE"){
output$h11[i] <- HpiOut[1,1]
output$hi12[i] <- HpiOut[1,2]
output$h21[i] <- HpiOut[2,1]
output$h22[i] <- HpiOut[2,2]
fhatOut <- kde(x=locs,H=HpiOut)
}
if (is.null(fhatQOut)=="FALSE"){
for (j in 1:length(levels)){
fhat.contlev <- contourLevels(fhatOut, cont=c(levels[j]))
fhat.contlines <- contourLines(x=fhatOut$eval.points[[1]],
y=fhatOut$eval.points[[2]], z=fhatOut$estimate, level=fhat.contlev)
convert contour lines into spatial objects to export as
polygon shp file
sldf <- ContourLines2SLDF (fhat.contlines)
proj4string(sldf) <- CRS("+proj=longlat +ellps=WGS84")
ps <- SpatiallLines2PolySet(sldf)
attr(ps,"projection") <- "LL"
sp <- PolySet2SpatialPolygons(ps)
dataframe <- as.data.frame(matrix(as.character(l,nrow=1,ncol=1)))
spdf <- SpatialPolygonsDataFrame(sp,dataframe,match.ID=TRUE)
get area and export shp files

if (G == DA
pls <- slot(spdf, "polygons") [[1]]
gpclibPermit ()

xx <- checkPolygonsHoles(pls)
a <- sapply(slot(xx, “Polygons“)égslot, "area"

h <- sapply(slot(xx, "Polygons"), slot, "hole")
output$isob0areakKm[i] <- sum(ifelse(h, -a, a))/1000000
writeOGR (spdf,dirout,paste(outnames[i], "KUD50",sep=""),
"ESRI Shapefile")}

if (§j == 2){
pls <- slot(spdf, "polygons")[[1]]
gpclibPermit ()

xx <- checkPolygonsHoles(pls)

a <- sapply(slot(xx, "Polygons"), slot, "area")

h <- sapply(slot(xx, "Polygons"), slot, "hole")

output$iso95areakm[i] <- sum(ifelse(h, -a, a))/1000000

writeOGR (spdf,dirout,paste(outnames[i],"KUD95",sep=""),"ESRI Shapefile")}

if (j == 3){
pls <- slot(spdf, "polygons") [[1]]
gpclibPermit ()

xx <- checkPolygonsHoles(pls)
a <- sapply(slot(xx, "Polygons"), slot, "area"
h <- sapply(slot(xx, "Polygons"), slot, "hole")
output$iso99areakm[i] <- sum(ifelse(h, -a, a))/1000000
writeOGR(spdf ,dirout,paste(outnames[i],"KUD99",sep=""),
"ESRI Shapefile")}
i33s
rm(data,data.xy,sppt,locs,HpiOut,fhatOut,fhat.contlev,
fhat.contlines,sldf,ps,sp,dataframe,spdf)
}
write output
write.csv(output,paste(dir,"\\output.csv",sep=""))

. There is also an alternative way to create KDE hplug-in without using the looping
environment in the code above. This also uses the ks package in a more straight forward
manner (Duong and Hazelton 2003, Duong 2007).

install.packages(c("gpclib","ade4","adehabitat","shapefiles"))

library(ks)
library(rgdal)
library(maptools)
library(gpclib)
library (PBSmapping)
library(adehabitat)
library(adehabitatHR)
library(raster)

#Load dataset
cat048 <-read.csv("Cat048HR.csv", header=T)

Get the current range from the original data frame read in from .csv
range <- "FP048"
tele.range <- subset(cat048, cat048$id == toString(range))

##Get only the coordinates
loc <- data.frame("x"=tele.range$x, "y"=tele.range$y)
70

50% Contour
95% Contour
- 99% Contour

Figure 4.1: Example of KDE with hplug—z’n smoothing parameter to estimate size of home

range for an American White Pelican.

##Define the projection of the coordinates
proj4string <- CRS("+proj=utm +zone=17N +ellps=WGS84")

##Make SpatialPointsDataFrame using the XY, attributes, and projection
spdf <- SpatialPointsDataFrame(loc, tele.range, proj4string = proj4string)

8. Need to calculate the bandwidth matrix to use later in creating the KDE.
Hpil <- Hpi(x = loc)

##Create spatial points from just the xy’s
loc.pts <- SpatialPoints(loc, projé4string=projéstring)

##write out the bandwidth matrix to a file if needed.
write.table(Hpil, paste("hpivalue_", range, ".txt", sep=""), row.names=FALSE,
Sep=|| \t n)

9. For home range calculations, some packages require evaluation points (ks) while others
require grid as spatial pixels (adehabitatHR). Understanding these simple concepts of
what formats of data are required by each package will save a tremendous amount of
time as we move forward!

##Set the expansion value for the grid and get the bbox from the
##SpatialPointsDataFrame

expandValue <- 2500 #This value is the amount to add on each side of the bbox
boundingVals <- spdf@bbox

71

##Get the change in x and y and adjust using expansion value

deltalong <- as.integer(((boundingVals[1,2]) - (boundingVals[1,1]))
+ (2*expandValue))

deltalat <- as.integer(((boundingVals[2,2]) - (boundingVals[2,1]))
+ (2*expandValue))

##100 meter grid for data in this exercise

gridRes <- 100

gridSizeX <- deltalong / gridRes

gridSizeY <- deltalat / gridRes

##0ffset the bounding coordinates to account for the additional area

boundingVals[2,1] <- boundingVals[2,1] - expandValue
boundingVals[2,2] <- boundingVals[2,2] + expandValue
boundingVals[1,1] <- boundingVals[1,1] - expandValue
boundingVals[1,2] <- boundingVals[1,2] + expandValue

##Grid Topology object is basis for sampling grid (offset, cellsize, dim)
gridTopo <- GridTopology((boundingVals[,1]),
c(gridRes,gridRes),c(gridSizeX,gridSizeY))

##Using the Grid Topology and projection create a SpatialGrid class
sampGrid <- SpatialGrid(gridTopo, proj4string = proj4string)

##Cast over to Spatial Pixels
sampSP <- as(sampGrid, "SpatialPixels")

##convert the SpatialGrid class to a raster
sampRaster <- raster(sampGrid)

##set all the raster values to 1 such as to make a data mask
sampRaster[] <- 1

##Get the center points of the mask raster with values set to 1
evalPoints <- xyFromCell (sampRaster, 1:ncell(sampRaster))

##Here we can see how grid has a buffer around the locations and trajectory.
##This will ensure that we project our home range estimates into a slightly
##tlarger extent than the original points extent (bbox) alone.

plot (sampRaster)

#lines(tele.range.ltraj.lines, cex=0.5, 1lwd=0.1, col="grey")

points(loc, pch=1, cex=0.5)

##Create the KDE using the evaluation points
hpikde <- kde(x=loc, H=Hpil, eval.points=evalPoints)

##Create a template raster based upon the mask and then assign the values from
##the kde to the template

hpikde.raster <- raster(sampRaster)

hpikde.raster <- setValues(hpikde.raster,hpikde$estimate)

72

##Lets take this raster and put it back into an adehabitat object
##This is convenient to use other adehabitat capabilities such as overlap
indices or percent volume contours

##Cast over to SPxDF
hpikde.px <- as(hpikde.raster,"SpatialPixelsDataFrame")

##create new estUD using the SPxDF
hpikde.ud <- new("estUD", hpikde.px)

##Assign values to a couple slots of the estUD
hpikde.ud@vol = FALSE
hpikde.ud@h$meth = "Plug-in Bandwidth"

##Convert the UD values to volume using getvolumeUD from adehabitatHR
##and cast over to a raster

hpikde.ud.vol <- getvolumeUD(hpikde.ud, standardize=TRUE)
hpikde.ud.vol.raster <- raster(hpikde.ud.vol)

##Here we generate volume contours using the UD

hpikde.99vol <- getverticeshr(hpikde.ud, percent = 99,ida
unout = "ha", standardize=TRUE)

hpikde.80vol <- getverticeshr(hpikde.ud, percent = 80,ida
unout = "ha", standardize=TRUE)

hpikde.95vol <- getverticeshr(hpikde.ud, percent = 95,ida
unout = "ha", standardize=TRUE)

hpikde.50vol <- getverticeshr(hpikde.ud, percent = 50,ida
unout = "ha", standardize=TRUE)

NULL, unin = "m",

NULL, unin = "m",

NULL, unin = "m",

NULL, unin = "m",

##Let’s put the HR, volume, volume contours, and points on a plot

##and write out the shapefiles for contours for use in ArcMap

plot.new()

breaks <- c(0, 50, 80, 95, 99)

plot(hpikde.ud.vol.raster, col=heat.colors(3), breaks=breaks,interpolate=TRUE,
main="Kernel Density Estimation, Plug-in Bandwidth",xlab="Coords X",
ylab="Coords Y", legend.shrink=0.80,legend.args=1ist (text="UD by
Volume (%)",side=4, font=2, line=2.5, cex=0.8))

plot(hpikde.50vol, add=TRUE)

plot(hpikde.80vol, add=TRUE)

plot(hpikde.95vol, add=TRUE)

plot(hpikde.99vol, add=TRUE)

points(loc, pch=1, cex=0.5)

writeOGR (hpikde.50vol,dsn="C:\\Walter\\WalterSpatialEcologyLab\\
SpatialEcologyCourse\\Chapter4\\Hplugin\\PantherKSplugin\\output",
layer="cat048plugb0" ,driver="ESRI Shapefile", overwrite=TRUE)

writeOGR (hpikde.80vol,dsn="C:\\Walter\\WalterSpatialEcologyLab\\
SpatialEcologyCourse\\Chapter4\\Hplugin\\PantherKSplugin\\output",
layer="cat048plug80" ,driver="ESRI Shapefile",overwrite=TRUE)

writeOGR (hpikde.95vol,dsn="C:\\Walter\\WalterSpatialEcologyLab\\
SpatialEcologyCourse\\Chapter4\\Hplugin\\PantherKSplugin\\output",

73

layer="cat048plug95" ,driver="ESRI Shapefile",overwrite=TRUE)
writeOGR (hpikde.99vol,dsn="C:\\Walter\\WalterSpatialEcologyLab\\

SpatialEcologyCourse\\Chapter4\\Hplugin\\PantherKSplugin\\output",

layer="cat048plug99" ,driver="ESRI Shapefile",overwrite=TRUE)

4.4 Brownian Bridge Movement Models (BBMM)

The BBMM requires (1) sequential location data, (2) estimated error associated with location
data, and (3) grid-cell size assigned for the output utilization distribution. The BBMM is
based on two assumptions: (1) location errors correspond to a bivariate normal distribution
and (2) movement between successive locations is random conditional on the starting and
ending location (Horne et al. 2007). Normally distributed errors are common for GPS data
and 1 h between locations likely ensured that movement between successive locations was
random (Horne et al. 2007). The assumption of conditional random movement between paired
locations, however, becomes less realistic as the time interval increases (Horne et al.

2007).

1. Now we can calculate home range on panthers using BBMM

2. First we need to install packages needed to estimate home ranges
install.packages(c("survival","maptools","sp","gpclib","foreign",
"lattice","BBMM"))

3. Then load the libraries from these packages
require(survival)
library(maptools)
require(sp)
require(gpclib)
require(foreign)
require(lattice)
require (BBMM)

4. Then we need to load the dataset for a single animal 155

cat1b55<-read.csv("C:\\Walter\\WalterSpatialEcologyLab\\SpatialEcologyCourse\\
Chapter4\\BBMM\\Cat155Test\\cat155.csv" ,header=T)

5. We need to define time lag between locations, GPS collar error, and cell size

BBMM = brownian.bridge(x=cat155$x_utm, y=cat155$y_utm,
time.lag=cat155%time.lag, location.error=34,
cell.size=100)

bbmm . summary (BBMM)

contours = bbmm.contour (BBMM, levels=c(seq(50, 90, by=10), 95, 99),

locations=cat155, plot=TRUE)

NOTE:

(a) Time lag refers to the elapsed time between consecutive GPS locations
that was presented in section 2.3

(b) GPS collar error can be from error reported by the manufacturer of the GPS
collar or from error test conducted at the study site

(c) Cell size refers to grid size we want to estimate the BBMM
74

Figure 4.2: Example of 95% BBMM home range for a Florida Panther.

6. We need to create output ascii files or shapefiles for graphical representation of size of

BBMM (Fig. 4.2). We can also compare BBMM for the Florida panther to KDE using
hplug—z'n (Fig. 4.3) and href (Fig. 4.4).

Print result for 50 percent BBMM

print (contours)

Pick a contour for export as Ascii

bbmm.50 = data.frame(x = BBMM$x, y = BBMM$y, probability =
BBMM$probability)

bbmm.50 = bbmm.50 [bbmm.50$probability <= contours$Z[1],]

Output ascii file for cells within specified contour.

m = SpatialPixelsDataFrame(points = bbmm.50[c("x", "y")], data=bbmm.50)

m = as(m, "SpatialGridDataFrame")

writeAsciiGrid(m, "50ContourInOut.asc", attr=ncol(bbmm.50))

Print result for 80 percent BBMM

print (contours)

Pick a contour for export as Ascii

bbmm.80 = data.frame(x = BBMM$x, y = BBMM$y, probability =
BBMM$probability)

bbmm.80 = bbmm.80 [bbmm.80$probability <= contours$Z[4],]

Output ascii file for cells within specified contour.

m = SpatialPixelsDataFrame(points = bbmm.80[c("x", "y")], data=bbmm.80)

m = as(m, "SpatialGridDataFrame")

writeAsciiGrid(m, "80ContourInOut.asc", attr=ncol(bbmm.80))

Print result for 95 percent BBMM

print (contours)

Pick a contour for export as Ascii

bbmm.95 = data.frame(x = BBMM$x, y = BBMM$y, probability =
BBMM$probability)

bbmm.95 = bbmm.95[bbmm.95$probability <= contours$Z[4],]

Output ascii file for cells within specified contour.

N

0o 2 4 8 Kilomecters
S ‘

Figure 4.3: Example of 95% KDE home range with hplug-m for a Florida Panther.

Avene. =z
55 e
e SR I T e
e R
o 3

Aot s

SIS
S SO o

iy

N
a 2 4 8 Kilomelers
Lo b ‘

Figure 4.4: Example of 95% KDE home range with href for a Florida Panther.

76

m = SpatialPixelsDataFrame(points = bbmm.95[c("x", "y")], data=bbmm.95)
m = as(m, "SpatialGridDataFrame")

writeAsciiGrid(m, "95ContourInQOut.asc", attr=ncol (bbmm.95))

Print result for 99 percent BBMM

print (contours)

Pick a contour for export as Ascii

bbmm.99 = data.frame(x = BBMM$x, y = BBMM$y, probability =
BBMM$probability)

bbmm.99 = bbmm.99 [bbmm.99$probability <= contours$z[7],]

Output ascii file for cells within specified contour.

m = SpatialPixelsDataFrame(points = bbmm.99[c("x", "y")], data=bbmm.99)

m = as(m, "SpatialGridDataFrame")

writeAsciiGrid(m, "99ContourInOut.asc", attr=ncol (bbmm.99))

7. Now we can create shapefiles of contours from ascii files in ArcMap
(a) Convert ASCII files to Rasters using Conversion Toolbox

Toolbox>Conversion Tools>To Raster>ASCII to Raster
Input ASCII raster file: 50ContourInOut.asc
Output raster: AsciiToRast
Output data type (optional): INTEGER

(b) Convert No Data values to a value of 1 and those that are not to a value
of 0 by:

Toolbox>Spatial Analyst Tools>Math>Logical>Is Null
Input raster: tvb3_99contr
Output raster: IsNull_bvb3_3

(c) Convert raster probability surface to a shapefile by opening shapefile table
Highlight all raster cells with a value=1 then open appropriate Toolbox as follows:

Toolbox>Conversion Tools>From Raster>Raster to Polygon
Input raster: IsNull_bvb3_3
Field (Optional): Value
Output Polygon Features: RasterT_IsNull_2.shp

Uncheck the ”Simplify polygons (optional)” box for more accurate results. Select
OK

Raster to Polygon tool will convert all cells with a value=1 to a shapefile with
multiple polygons.

(d) Calculate area of new shapefile using appropriate tool (i.e., Xtools) Open table to
view area of polygon and summarize to get total size of home range (Fig. 4.5)

Right click on column heading "Hectares"
Select Statistics and Sum will be the total hectares in the home range

7

= Potygon | 65 95|
(|55 Potveen | 66 14692 |
| | 66|Polygon | 67| 72)
[| &7 Poivgon | 68 16031 |
] 8 Potvgen | 69 1| s72.281997 353
63 |Polygon | 70 1|5212.088621 wz|
(|70 |Poivgon | 71 127426 22623 | SRR
7] 71 |Potygon | 72| 102)
[] 72[Polygon | 73 2273 |
] 73 pogen | 74] L J—
[T 7a[Potvgon | 75 11121858432 | 454 |
| 75Foivgon | 78 1| 259.460851 105 |
| 76paygen | 77 1| 23089222| a7 |
(| 77 [Polygon | 78 1242081 5132 | 87971 |
[| 78lPoivgon | 79 1| 227 338951 92|
] 7alPoiygon | &0 1| 254 518543 | 103 |
| eolFolygon | 81 1| 228.608005 a3 |
[| 81 Polygon | 82 1| 177.815875 | 72|
7] ®2|Poiygon | e 1| 247054 1|
| @3Foivgon | 8¢ 1] 41370 38288 | 16742 | =
Record: 14 «[[o ﬂﬂ stow: [A1 Selected Records (0 out of 84 Selected) |
A g

P

Statistics of by53a_98contour_poly

fscisee i a s Frequency Distribution

L
Mear: 2747714286
Standard Devistion: 11148.251105 20

1.0 373961 J41m .z

18698.5 560926 934887

Figure 4.5: This figure shows how to summarize size of home range in ArcMap.

8. Or another way to create shapefiles of contours right in R! There is also an additional
way here to create ascii files that will eliminate the need for Step 7b above.

#First an alternate way to create the ascii files after creating '"contours"
#from Step 5 above.

Create data.frame indicating cells within the contour desired and export
as Ascii Grid
bbmm.contour = data.frame(x = BBMM$x, y = BBMM$y, probability = BBMM$probability)

str(contours) #Look at contour or isopleth levels 1 to 7 (50%-99%)
#$List of 2

#$ Contour: chr [1:7] "BO%" "60%" "70%" "80%"

#$ Z : num [1:7] 7.35e-05 5.66e-05 4.22e-05 2.81e-05 1.44e-05 .

Pick a contour for export as Ascii (1 = 50%, 2 = 60%, etc.)
bbmm.50 = bbmm.contour [bbmm.contour$probability >= contours$z[1],]
bbmm.50$in.out <- 1

bbmm. 50 <-bbmm.50[,-3]

Output ascii file for cells within specified contour.

m50 = SpatialPixelsDataFrame(points = bbmm.50[c("x", "y")], data=bbmm.50)
m50.g = as(mb0, "SpatialGridDataFrame")

writeAsciiGrid(m50.g, "50ContourInQut.asc", attr=ncol(bbmm.50))

9. Code to start converting the above SpatialPixelsDataFrame to
SpatialPolygonsDataFrame and export a;gESRI Shapefile

10.

11.

12.

shp.50 <- as(m50, "SpatialPolygonsDataFrame")
map.ps50 <- SpatialPolygons2PolySet (shp.50)
diss.map.50 <- joinPolys(map.ps50, operation = ’UNION’)

#Set Projection information
diss.map.50 <- as.PolySet(diss.map.50, projection = ’UTM’, zone = ’17°)

#Re-assign the PolySet to Spatial Polygons and Polygon ID (PID) to 1
diss.map.pb0 <- PolySet2SpatialPolygons(diss.map.50, close_polys = TRUE)
datab0 <- data.frame(PID = 1)

diss.map.p50 <- SpatialPolygonsDataFrame(diss.map.p50, data = data50)

Use package rgdal to write shapefile to ArcMap
writeOGR(diss.map.p, dsn = ".", layer="contour50", driver = "ESRI Shapefile")
Also use package rgdal to read the shapefile back into R

map.50 <- readOGR(dsn=".", layer="contour50")
plot (map.50)

Repeat steps 8-10 for each contour shapefile desired

2960000
|
<P
l@-l
~4

2950000
|

2540000
|

2930000
|

I I I I I
440000 450000 450000 470000 480000

X

Figure 4.6: Home range of one panther using BBMM showing all contours.

79

13. Another short exercise to subset large dataset by animal ID
(a) Read in data for 10 panthers

cats <- read.csv("Panther_GPS_Subset10.csv")
str(cats)
cats$CatID <- as.factor(cats$CatID)

(b) Chose ID based on variable name within ID column of cats

onecat <- "110"

#Extract CatID from
loc <- subset(cats, cats$CatID == toString(onecat))

#Remove all NA locatioms
loc <- subset(loc, loc$Fix Interval != "NA")

(¢) Run BBMM for new dataset

BBMM2 = brownian.bridge(x=1oc$NADS3UTME, y=1oc$NADS3UTMN,
time.lag=loc$Fix_Interval, location.error=34, cell.size=100)
bbmm . summary (BBMM2)

windows ()#opens a new window to display home range

#Plot results for all contours
contours110 = bbmm.contour (BBMM2, levels=c(seq(50, 90, by=10), 95, 99),
locations=loc, plot=TRUE)

(d) Now let’s only include locations collected within a 7 hour GPS schedule (i.e., < 421
minutes)

loc2 <- subset(loc, loc$Fix_Interval != "NA" & loc$Fix_Interval < 421)
BBMM3 = brownian.bridge (x=10c2$NADS83UTME, y=loc2$NADS3UTMN,

time.lag=loc2$Fix_Interval, location.error=34, cell.size=100)
bbmm . summary (BBMM3)

windows ()

#Plot results for all contours
contours110_1 = bbmm.contour (BBMM3, levels=c(seq(50, 90, by=10), 95, 99),
locations=loc2, plot=TRUE)

(e) Or we could exclude the extreme 1% of locations based on a time cutoff that we
will determine

#Redefine Fix_Interval to "timediff" to flow with code below
loc$timediff <- loc$Fix_Interval
str(loc)

freq <- as.data.frame(table(round(loc$timediff)))

#Result is Varl = the time difference, and Freq = its frequency in the data
freq$percent <- freq$Freq/dim(loc) [1]1*100

freq$sum[1] <- freq$percent[1]

80

#Loop below runs through data to determine "cutoff" time
for (j in 2:dim(freq) [1]){

freq$sum[j] <- freq$percent[jl+freq$sum[j-1]

3

indicator <- which(freq$sum>99)

cutoff <- as.numeric(as.character(freq$Varl[min(indicator)]))
cutoff

[1] 2100 #2100 minutes

(f) Need to subset data and only calculate BBMM with timediff < 2101 minutes

loc <- subset(loc, loc$Fix_Interval < 2101)
str(loc)

#Run BBMM code for only data with timediff < 2101 minutes

BBMM4 = brownian.bridge(x=1oc$NADS3UTME, y=1oc$NADS3UTMN,
time.lag=loc$Fix_Interval, location.error=34, cell.size=100)

bbmm . summary (BBMM4)

windows ()

#Plot results for all contours

contours110_2 = bbmm.contour (BBMM4, levels=c(seq(50, 90, by=10), 95, 99),
locations=loc, plot=TRUE)

All locations panther 110 Locations < 7 hours apart Top 1% of outliers removed

Figure 4.7: Home range using BBMM for panther 110 with various time lags incorporated.

4.5 Movement-based Kernel Density Estimation (MKDE)

If we want to take both BBMM and KDE to a higher level we can incorporate
movement-based estimators of home range. Movement-based Kernel Density Estimation
(MKDE) incorporates movements trajectories and habitat components of the landscape your
animal occupies (Benhamou 2011, Benhamou and Cornelis 2010). This method requires a
habitat layer and the adehabitatHR package rg%uires that no duplicate entries exist for a

given date so makes estimates of home range with GPS data problematic. Furthermore, after
tirelessly trying this method for days using panther data with time intervals, we changed to
vulture data that had dates but then had to remove duplicates. If you have worked out all of
these issues, you can skip ahead to MKDE estimates with your data starting at Step 6.

1. Begin by setting your working directory and loading needed packages

setwd ("C:\\Walter\\WalterSpatialEcologyLab\\SpatialEcologyCourse\\
Chapter4\MKDE\\Vulture")

install.packages(c("gpclib","ade4","adehabitatHR","raster", "rgdal",
"shapefiles"))

library(adehabitatHR) #package needed for home range estimation

library(adehabitat) #package needed import.asc function

library(sp) #package needed to import and manipulate raster datasets

library(rgdal) #package needed to import ascii files into R

library(raster) #package needed to manipulate raster files

An easier way is to just open the .RData file in the folder and double click. This will
also set that folder as the working directory.

2. Now open the script in that folder and run code directly from the script. Create an Ascii
file from your raster grid in ArcMap

ArcToolbox - Conversion Tools - From Raster - Raster to Ascii
Saved in folder "C:\\Walter\\WalterSpatialEcologyLab\\SpatialEcologyCourse
Chapter4\\MKDE\\Vulture

NOTE: Two issues at this step held me back with the method for weeks so we will stress
them here:

Ezxtent of the raster layer selected - Although Extent was the lesser problem, it still
needs to be address for several reasons. If the extent is too large or raster cell size too
small then processing time increases. Although we would not really want to spend the
time to clip raster habitat layers for each animal, you may need to have separate rasters
for different areas of your study site to cut down on processing time. More importantly,
animals need to be within the same grid for analysis using MKDE/BRB home range
estimates. This will become more apparent later but preparing habitat or landscape
layers for all animals using the same habitat extent will save time in the end.

Projection of the raster layer and locations - Even we missed this one with all our
experiences and constant issues with data layers in different projections. We assumed
that defining the projection with R would take care of this issue but we could not have
been more wrong. So before we move forward, we want to demonstrate our thought
processes here and how we solved this problem.

(a) Initially we were trying a hunch so we used only a single vulture’s UTM locations
(instead of 2 birds) that were in UTM Zone 17N to make processing time easier and
to explore this issue. We can plot the trajectory of this bird that also serves to
identify the coordinates on the x and y axis (code for this will be discussed in detail
later in this section) and is displayed in Figure 4.8.

Using the raster habitat layer that was created using Albers Equal Area Conic.
When we import the Ascii file using the code below (there are many ways to import
Ascii and raster files into R) you caé12already see the difference in the raster layer

X
3590000 3595000 3600000
| | 1

3585000
|

3580000
|

T T T T T T
520000 525000 530000 535000 540000 545000

Y

Figure 4.8: Locations of one vulture in UTM 17N.

by it’s orientation and the numbers on the x and y axis are on a different scales
compared to the locations in Figure 4.8 (Fig. 4.9).

#NOTE: R won’t recognize double digit veg categories

Use this code to identify projection of raster only with the
resulting text file with habitat categories (TableCode.txt)

filel <- paste("C:\\Walter\\WalterSpatialEcologyLab\\SpatialEcologyCourse\\
Chapter4\\BRB\\OneVulture\\onebird.asc", sep = "\\")

levelfile <- paste("C:\\Walter\\WalterSpatialEcologyLab\\SpatialEcologyCourse\\
Chapter4\\BRB\\OneVulture\\TableCode.txt", sep = "\\")

asp <- import.asc(filel, lev = levelfile, type = "factor")

image (asp)

asp

Now, going back into to ArcMap (Or use methods in Section 1), project the raster
layer into the same projection as the vulture locations (or vice versa) using the
Ascii file "onebirdutm.asc" we get the layers in the same projection (Fig. 4.10).

proj4string(habitat) <- CRS("+proj=utm +zone=17N +ellps=WGS84")

With the same projections for our 2 data layers, we can move forward with one
further test to determine if our data are lined up properly for future BRB analysis.
We can implement some different code to import an Ascii file as a "Spatial Pixels
Data Frame":

habitat = as(readGDAL("onebirdutm.asc"), "SpatialPixelsDataFrame")
image (habitat)

Then we create ltraj as in Section 3 and use some additional code to overlay the
trajectory onto the Spatial Pixels Data Frame using the command "spixdf" as in the
code below resulting in Fig. 4.11. Basically, if this works then we are on the right
path to moving forward with MKDE.

#Creates a Spatial Points Data Frame for 2 animals by ID
onebird <-read.csv("C:\\Walter\\WalterSpatialEcologyLab\\SpatialEcologyCourse\\
Chapter4\\BRB\\OneVulture\\infolocs.csv", header=T)
83

vy
1160000 1165000 1170000
I

1155000

1150000

1145000

1415000 1420000 1425000 1430000 1435000 1440000

b o.¢

Figure 4.9: Imported habitat layer in Albers Equal Area Conic Projection.

onebird <-read.csv("C:\\Walter\\WalterSpatialEcologyLab\\SpatialEcologyCourse\\
Chapter4\\BRB\\OneVulture\\Bird49.csv", header=T)

onebird$id <-as.factor(onebird$id) #Needs ID as a factor for ud estimate later

data.xy = onebird[c("x","y")]

#Creates class Spatial Points for all locatioms
xysp <- SpatialPoints(data.xy)
proj4string(xysp) <- CRS("+proj=utm +zone=17N +ellps=WGS84")

#Creates a Spatial Data Frame from
sppt<-data.frame (xysp)

#Creates a spatial data frame of ID
idsp<-data.frame(onebird[2])

#Creates a spatial data frame of Date
datesp<-data.frame(onebird[1])

#Merges ID and Date into the same spatial data frame
merge<-data.frame(idsp,datesp)

#Adds ID and Date data frame with locations data frame
coordinates (merge) <-sppt

#Cast the Dates as POSIXct dates
merge$DT <-as.POSIXct(strptime(merge$Date, format=’%Y%md’))

#Create an ltraj trajectory object.

ltraj <- as.ltraj(coordinates(merge), merge$DT, id = merge$id,
burst = merge$id, typeIl = TRUE)

plot(1ltraj)

#Code to overlap trajectory onto raster layer
plot(ltraj, spixdf=habitat)

3. If you have troubles getting a raster to Ascii in ArcMap to actually show up as an Ascii

vy

3575000 3580000 3585000 3590000 3585000 3600000

515000 520000 525000 530000 535000 540000 545000

XX

Figure 4.10: Imported habitat layer projected to UTM Zone 17N similar to vulture loca-
tions.

|
Figure 4.11: Overlay of ltraj on spixdf=habitat in UTM Zone 17N.

file there is good reason. We need to rename the text file by replacing ".txt" with ".asc"
in Windows Explorer. ArcMap will not save as an ".asc" file and we have no idea why!

4. Extraneous code here from Section 1 to import Ascii file from step 2 into R using one of
several packages. Ascii files can be numeric (DEMs) or categorical (Vegetation/Habitat
categories; Fig. 4.12). Now skip ahead to Step 5.

5. Now that we solved the issue with one bird let’s look at this problem with 2 birds. Keep
in mind that you will need a habitat layer that is in the same projection and extent of
all individuals used in the analysis.

6. First, we need to import an ".asc" file and then create a Spatial Pixels Data Frame of the
ascii grid we imported that covers the extent of both vultures.

habitat = as(readGDAL("beauzoom100.asc"), "SpatialPixelsDataFrame")
#perimclipl100.asc has GDAL driver AAIGrid

#and has 840 rows and 890 columns

str(habitat)#shows that there is %isprojection

vy
1160000 1180000
I I

1140000
|

1120000
|

T T T T
1380000 1400000 1420000 1440000 1460000

XX

Figure 4.12: Imported raster dataset showing coastline and tributaries.

image (habitat)
proj4string(habitat) <- CRS("+proj=utm +zone=17N +ellps=WGS84")
str(habitat)#shows new projection in 17N

. Import the vulture GPS locations for 2 birds in the proper format

#Creates a Spatial Points Data Frame for 2 animals by ID

#twobirds <-read.csv("C:\\Walter\\WalterSpatialEcologyLab\\SpatialEcologyCourse\\
Chapter4\\MKDE\\Vulture\\alllocs\\infolocs.csv", header=T)

twobirds <-read.csv("C:\\Walter\\WalterSpatialEcologyLab\\SpatialEcologyCourse\\
Chapter4\\MKDE\\Vulture\\alllocs\\Twobirds.csv", header=T)

twobirds$id <-as.factor(twobirds$id)

#Needs to be done to get proper digits of date into R then POSIXct
xtime <- paste(twobirds$0ldDate,twobirds$Hour)
twobirds$PosTime <- xtime

#Calculates time difference to use as dt

twobirds$date_time <- chron(as.character(twobirds$0rigDate) ,twobirds$Hour,
format=c(dates="m/d/y", times="h:m:s"))

timediff <- diff (twobirds$date_time)*24%60

twobirds <-twobirds[-1,]

twobirds$timediff <-as.numeric(abs(timediff))

data.xy = twobirds[c("x","y")]

#Creates class Spatial Points for all locatioms

xysp <- SpatialPoints(data.xy)

projé4string(xysp) <- CRS("+proj=utm +zone=17N +ellps=WGS84")

#Creates a Spatial Data Frame from
sppt<-data.frame (xysp)

#Creates a spatial data frame of ID

86

idsp<-data.frame (twobirds[2])

#Creates a spatial data frame of dt

dtsp<-data.frame (twobirds[17])

#Creates a spatial data frame of Burst
busp<-data.frame(twobirds[19])

#Merges ID and Date into the same spatial data frame
merge<-data.frame(idsp,dtsp,busp)

#Adds ID and Date data frame with locations data frame
coordinates (merge) <-sppt

head(as.data.frame(merge))

1id PosTime timediff X y

#2 49 20061001 8:00:00 120 520120.6 3587122

#3 49 20061001 9:00:00 60 520385.8 3587677

#4 49 20061001 10:00:00 60 520401.4 3587714

#5 49 20061001 11:00:00 60 521136.6 3588344

#6 49 20061001 12:00:00 60 521559.3 3588474

#7 49 20061001 13:00:00 60 520040.7 3587898
merge

coordinates id PosTime timediff
#68 (520168, 3587070) 49 20061006 15:00:00 60
#69 (520121, 3587090) 49 20061006 16:00:00 60
#70 (520136, 3587070) 49 20061006 17:00:00 60
#71 (520136, 3587090) 49 20061007 19:00:00 1560
#72 (520136, 3587090) 49 20061007 20:00:00 60

Cast the Dates as POSIXct that is necessary for adehabitatHR to recognize
#individual locations to create trajectory for each animal
merge$DT <-as.POSIXct(strptime(merge$PosTime, format=’%Y/m¥%d %H:%M:%S’))

#Use code to look for NAs which are not good and can cause code failure
merge$DT

. Create an ltraj from the vulture locations using similar code from Chapter 3 (Fig. 4.13).

ltraj <- as.ltraj(coordinates(merge), merge$DT, id = merge$id,
burst = merge$id, typeIl = TRUE)

#Plot the trajectory
plot(ltraj)

#Plot the trajectory over the habitat layer
plot(ltraj, spixdf=habitat)

. Now identify habitats that can and can not be used by vultures (i.e., water is not used;
Fig. 4.14)

#Be sure to do this step after plotting ltraj onto spixdf or won’t work!
#This step just builds a "fake" habitat map with habitat=1
fullgrid(habitat) <- TRUE

hab <- habitat

hab[[1]] <- as.numeric(!is.na(hab%&}]]))

10.

Figure 4.13: Movement paths of two Black Vultures with a similar extent.

image (hab)#See note below

#NOTE: When viewing this image, there may appear to be a periphery of habitat
around the extent of the raster that you exported as an ascii from ArcMap. Even
deleting the NoData values or categories in ArcMap does not remove this extra
data from around the periphy of your habitat layer. To remove this category of
data, clip the raster within a boundary box in R or in ArcMap using the following:

Data Management Tools-->Raster-->Raster Dataset-->Copy Raster
Select the optional field in this tool called Ignore Background Value and a related
NoData Value field (see help window for more info on how to use these fields).

#The step below is needed to convert SpatialGrid to SpatialPixels for use in "ud"
#estimation (i.e., "habitat" in "grid=habitat" must be of class SpatialPixels)
fullgrid(habitat) <- FALSE

class(habitat)#shows it is now class SpatialPixels

Now we can begin to create Movement-based KDEs using biased random bridges (BRBs)

#Assign parameter values for BRB
tmax <- 1%x(24%60%60) + 1 ## set the maximum time between locations
to be just more than 1 day
Imin <- 50 ## locations less than 50 meters apart are considered inactive.
Set very very low to ensure that the acvitivy
variable is used.
hmin <- 30 ## arbitrarily set to be same as hab grid cell resolution

#Diffusion component for each habitat type using plug-in method
vv<- BRB.D(ltraj, Tmax = tmax, Lmin = lmin, habitat = habitat)
Vv

#$49°¢
88

Figure 4.14: Red identifies ocean and tributaries not used by vultures.

n D
#global 234 146.4695789
#1 4 1.5909335
#2 9 1.5728743
#3 0 NaN
#4 4 1.2998600
#5 1 0.4621171
#6 2 0.4812110
#7 0 NaN
#$50°

n D
#global 272 148.5203800
#1 1 1.2267057
#2 3 21.6201300
#3 0 NaN
#4 1 0.7170513
#5 0 NaN
#6 5 9.5334889
#7 0 NaN

#Convert DBRB class to a data frame if needed
dafr <- do.call(rbind.data.frame, vv)write.table(dafr, "DiffCoeff2.txt",
sep="\t", append=TRUE, col.names=F)

#Diffusion component for each habitat type using maximum likelihood
vv2<- BRB.1likD(1ltraj, Dr=c(1,50000), Tmax = tmax, Lmin = lmin, habitat = habitat)
vv2

#Now use the function BRB to estimate the UD for each vulture
ud <- BRB(1ltraj, D = vv, Tmax = tmax, Lmin = Ilmin, hmin=hmin,
89

habitat = NULL, grid= habitat, b=TRUE, extent=0.01, tau = 300)
ud
image (ud)

#Address names in ud by assigning them to be the same as the ids in ltraj
#Must be done before using '"getverticeshr" function
names(ud) <- id(ltraj)

. Create contours using getverticeshr to display or export as shapefiles (Fig. 4.15).

#Now let’s just simply plot some contour polygons for visualization before
#moving forward

windows() #code creates separate windows to display each home range contour
verl_50 <- getverticeshr(ud, percent=50, standardize = TRUE, whi = id(ltraj[1]))
plot(veri_50)

windows ()

ver2_50 <- getverticeshr(ud, percent=50, standardize
plot(ver2_50)

TRUE, whi = id(1traj[2]))

windows ()

verl_95 <- getverticeshr(ud, percent=95, standardize
plot(ver1l_95)

windows ()

ver2_95 <- getverticeshr(ud, percent=95, standardize
plot(ver2_95)

TRUE, whi = id(1traj[1]))

TRUE, whi = id(1traj[2]))

verl_99 <- getverticeshr(ud, percent=99, standardize = TRUE, whi = id(ltraj[1]))
plot(verl_99)

windows ()

ver2_99 <- getverticeshr(ud, percent=99, standardize

plot(ver2_99)

TRUE, whi = id(1traj[2]))

Or plot UDs in raster format

#Plot bird 49

udvoli<-getvolumeUD(ud[[1]], standardize = FALSE)

myPal <- colorRampPalette(c("red","orange","yellow"))
udvoltmpl<-udvoll

udvoltmpl@data$n<- ifelse(udvoltmpl@data$n>=94.9,NA,udvoltmpl@data$n)
image (udvoltmpl, col=myPal (64) ,frame.plot=FALSE)

title(main=paste ("MDKE","49",sep=" "),line=0,cex.main=1)

#Plot bird 50

udvol2<-getvolumeUD(ud[[2]], standardize = FALSE)

myPal <- colorRampPalette(c("red","orange","yellow"))
udvoltmp2<-udvol?2

udvoltmp2@data$n<- ifelse(udvoltmp2@data$n>=94.9,NA,udvoltmp2@data$n)
image (udvoltmp2, col=myPal (64) ,frame.plot=FALSE)

title(main=paste ("MDKE","50",sep=" "),line=0,cex.main=1)

. Convert the "ud" to a SpatialPixelsDataFrame.
udspdf <- estUDm2spixdf (ud)

90

udspdf is an object of class SpatialPixelsDataFrame
have a look
mimage (udspdf)

Convert the original map to fullgrid (i.e. SpatialGridDataFrame)
fullgrid(udspdf) <- TRUE

and the same for the original habitat map (here, it is not needed,
as the map hab is already fullgrid, but it might be required on your
data)

fullgrid(hab)<-TRUE

The two maps have the same dimensions:
length(udspdf [[1]1])

length(hab[[1]1])

Figure 4.15: Contours of home range for 2 black vultures estimated using the Movement-
based kernel density method (MKDE)

13. Then, you just have to multiply each column of udspdf by the habitat variable:

resu <- lapply(l:ncol(udspdf), function(i) {udspdf[[il] * hab[[1]1] /
sum(udspdf [[i]] * hab[[1]1)3})

resu <- as.data.frame(resu)

names (resu) <- names(udspdf@data)

and define it as data slot for udspdf

udspdf@data <- resu

91

Have a look at the data (after conversion to SpatialPixelsDataFrame):

fullgrid(udspdf) <- FALSE
mimage (udspdf)

Try stepping through each animal in the ud and replacing the @data element.

ud2 <- ud ##make copy of the ud

for (i in 1:length(ud2)){

idStr <- id(ltraj[il)

print(paste(i, "th animal is ", idStr, sep=""))
temp <- udspdf [1dStr]

udf <- temp@data

names (udf) = "dens"

print (summary (slot(ud2[[i]], "data"))) ## print summary of the

print (summary (udf)) ## print summary of the udspdf object

slot(ud2[[i]], "data", check = TRUE) <- udf #Replaced the data

#clipped data
b

windows ()
verl <- getverticeshr(ud2, percent=50, standardize
plot(verl)
windows ()
ver2 <- getverticeshr(ud2, percent=50, standardize
plot (ver2)

TRUE,

TRUE,

windows ()
verl <- getverticeshr(ud2, percent=95, standardize
plot(verl)
windows ()
ver2 <- getverticeshr(ud2, percent=95, standardize
plot(ver2)

TRUE,

TRUE,

verl_99 <- getverticeshr(ud2, percent=99, standardize
plot(ver1l_99)

windows ()

ver2_99 <- getverticeshr(ud2, percent=99, standardize
plot(ver2_99)

4.6 Dynamic Brownian Bridge Movement Model (dBBMM)

whi

whi

whi

whi

TRUE, whi

TRUE, whi

ud object

slot with the

= id(1traj[1]))

= id(1traj[2]))

= id(1traj[1]))

= id(1traj[2]))

id(1traj[11))

id(1traj[2]))

With the wide-spread use of GPS technology to track animals in near real time, estimators of
home range and movement have developed concurrently. Unlike the traditional point-based

estimators (i.e., MCP, KDE with href/hplug-m

) that only incorporate density of locations into

home range estimation, newer estimators incorporate more data provided by GPS technology.
While BBMM incorporates a temporal component and GPS error into estimates, dynamic
Brownian Bridge Movement Models (dABBMM) incorporate temporal and behavioral
characteristics of movement paths into estimation of home range (Kranstauber et al. 2012).
However, estimating a movement path over the entire trajectory of data should be separated
into behavorial movement patterns (i.e., resting, feeding) prior to estimating the variance of
the Brownian motion (02,,). Overestimating %15 o2, will cause an imprecision in estimation

of the utilization distribution that dBBMM seeks to address (Kranstauber et al. 2012).
1. Load packages and read the dataset for mule deer in Colorado.

library(adehabitatLT)
library(move)
library(circular)
library(sp)

muleys <-read.csv("DCmuleysedited.csv")
str(muleys)

#TIME DIFF ONLY NECESSARY AS A MEANS TO EXCLUDE POOR DATA LATER
muleys$Date <- as.numeric(muleys$GPSFixTime)

timediff <- diff(muleys$Date)*24*60

muleys <-muleys[-1,]

muleys$timediff <-as.numeric(abs(timediff))

2. make dates as.POSIXct so we can sort data later

muleys$DT <-as.POSIXct(strptime(muleys$GPSFixTime, format=’%Y.%m.%d %H:%M:%0S’))
muleys$DT

3. Sort data here to address error in code - must be done or move object will not be
created! I am not sure why but if data is sorted properly in excel you may be able to
ignore this step.

muleys <- muleys[order (muleys$id,muleys$DT),]

#EXCLUDE OUTLIERS AND POOR DATA FIXES

newmuleys <-subset(muleys, muleys$X > 599000 & muleys$X < 705000 &
muleys$Y > 4167000 & muleys$timediff < 14401 & muleys$id != "D12")

muleys <- newmuleys

4. Code to separate each animal into a shapefile or csv file to use as single "stack" object in
dBBMM. Used this method because plotting function in dBBMM package for all

animals was not easy to manipulate when running from "moveStack" object.

indata <- muleys
innames <- unique(muleys$id)
innames <- innames[1:6]
outnames <- innames
begin loop to calculate home ranges
for (i in 1:length(innames)){
data <- indatal[which(indata$id==innames([i]),]
if (dim(data) [1] !'= 0){
export the point data into a shp file
data.xy = datalc("X", "Y")]
coordinates(data.xy) <- ~X+Y
sppt <- SpatialPointsDataFrame(coordinates(data.xy) ,data)
proj4string(sppt) <- CRS("+proj=utm +zone=12 +datum=WGS84")
#writePointsShape (sppt,fn=paste(outnames[i],sep="/") ,factor2char=TRUE)
#sppt <-datal[c(-6,-12,-13,-14,-15,-16,-19,-20)] #remove columns if needed
write.csv(sppt, paste(outnames[i],"csv",sep="."),quote=FALSE, row.names=FALSE)

93

}
. Create a move object for all deer using the Move package

loc <- move(x=muleys$X, y=muleys3$Y, time=as.POSIXct(muleys$GPSFixTime,
format="%Y.%m.%d %H:%M:%S"), proj=CRS("+proj=utm"),data=muleys,
animal=muleys$id)

. Change projection method to "aeqd" which means Azimuthal Equidistant to center the
coordinate system to the track for "technical reasons" according to the package authors.

loc2 <- spTransform(loc, CRSobj="+proj=aeqd", center=TRUE)
n.locs(loc2)

head(time.lag(loc2, units="mins"))

head (timestamps(loc2))

. Create a dBBMM object

dbbmm <- brownian.bridge.dyn(object=loc2[1:2589,], location.error=22,
dimSize=450, ext=.3, time.step=600)

. Alternatively, create a Mowve object and run dBBMM for each deer individually for
increased flexibility in plotting home range contours. Need to create separate .csv files if
proceeding with the code below this point.

dataD4 <- read.csv("D4.csv", header=T)

d4 <- move(x=dataD4$Long, y=dataD4$Lat, time=as.P0SIXct(dataD4$GPSFixTime,
format="%Y.%m.%d %H:%M:%S"), proj=CRS("+proj=longlat"),data=dataD4,
animal=dataD4$id)

locd4 <- spTransform(d4, CRSobj="+proj=aeqd", center=TRUE)

d4_dbbmm <- brownian.bridge.dyn(object=locd4, location.error=22, dimSize=1000,
ext=.25, time.step=180)

plot(d4_dbbmm)

contour (d4_dbbmm, levels=c(.5,.9,.95,.99), add=TRUE)

#plot(d4, type="o", col=1, lwd=2, pch=20, xlab="location_long",
ylab="location_lat")#col= needs numbers for the number of animals

windows ()

dataD6 <- read.csv("D6.csv", header=T)

d6 <- move(x=dataD6$Long, y=dataD6$Lat, time=as.P0SIXct(dataD6$GPSFixTime,
format="%Y.%m.%d %H:%M:%S"), proj=CRS("+proj=longlat"),data=dataD6,
animal=dataD6$id)

locd6 <- spTransform(d6, CRSobj="+proj=aeqd", center=TRUE)

d6_dbbmm <- brownian.bridge.dyn(object=locd6, location.error=22, dimSize=1000,
ext=.25, time.step=300)

plot(d6_dbbmm)

contour (d6_dbbmm, levels=c(.5,.9,.95,.99), add=TRUE)

show (d6_dbbmm)

#plot (d6, type="o", col=2, 1lwd=2, pch=20, xlab="location_long",
ylab="location_lat")#col= needs numbers for the number of animals

windows ()
dataD8 <- read.csv("D8.csv", header=T)
newD8 <-subset(dataD8, dataD8$X > 685000 & dataD8$Y > 4187000)

dataD8 <- newDS8
94

d8 <- move(x=dataD8$Long, y=dataD8%Lat, time=as.P0SIXct(dataD8$GPSFixTime,
format="%Y.%m.%d %H:%M:%S"), proj=CRS("+proj=longlat"),data=dataD8,
animal=dataD8$id)

locd8 <- spTransform(d8, CRSobj="+proj=aeqd", center=TRUE)

d8_dbbmm <- brownian.bridge.dyn(object=locd8, location.error=22, dimSize=1000,
ext=.25, time.step=180)

plot (d8_dbbmm)

contour (d8_dbbmm, levels=c(.5,.9,.95,.99), add=TRUE)

show (d8_dbbmm)

#plot (d8, type="o", col=3, lwd=2, pch=20, xlab="location_long",
ylab="location_lat")#col= needs numbers for the number of animals

windows ()

dataD15 <- read.csv("D15.csv", header=T)

d15 <- move(x=dataD15$Long, y=dataD15$Lat, time=as.P0SIXct(dataD15$GPSFixTime,
format="%Y.%m.%d %H:%M:%S"), proj=CRS("+proj=longlat"),data=dataD15,
animal=dataD15%$id)

locdl5 <- spTransform(dl5, CRSobj="+proj=aeqd", center=TRUE)

d15_dbbmm <- brownian.bridge.dyn(object=locdl5, location.error=22, dimSize=1000
,ext=.25, time.step=180)

plot(d15_dbbmm)

contour (d15_dbbmm, levels=c(.5,.9,.95,.99), add=TRUE)

show(d15_dbbmm)

#plot (d15, type="o", col=4, lwd=2, pch=20, xlab="location_long",
ylab="location_lat")#col= needs numbers for the number of animals

windows ()

dataD16 <- read.csv("D16.csv", header=T)

d16 <- move(x=dataD16$Long, y=dataD16$Lat, time=as.PO0SIXct(dataD16$GPSFixTime,
format="%Y.%m.%d %H:%M:%S"), proj=CRS("+proj=longlat"),data=dataD16,
animal=dataD16$id)

locd16 <- spTransform(dl6, CRSobj="+proj=aeqd", center=TRUE)

d16_dbbmm <- brownian.bridge.dyn(object=locdl16, location.error=22, dimSize=1000,

ext=.25, time.step=180)

plot (d16_dbbmm)

contour(d16_dbbmm, levels=c(.5,.9,.95,.99), add=TRUE)

show(d16_dbbmm)

#plot (d16, type="o", col=5, lwd=2, pch=20, xlab="location_long",
ylab="location_lat")#col= needs numbers for the number of animals

windows ()

dataD19 <- read.csv("D19.csv", header=T)

newD19 <-subset(dataD19, dataD19$X > 693000 & dataD19$Y > 4166000)

dataD19 <- newD19

d19 <- move(x=dataD19$Long, y=dataD19$Lat, time=as.P0SIXct(dataD19$GPSFixTime,
format="%Y.%m.%d %H:%M:%S"), proj=CRS("+proj=longlat"),data=dataD19,
animal=dataD19$id)

locd19 <- spTransform(dl9, CRSobj="+proj=aeqd", center=TRUE)

d19_dbbmm <- brownian.bridge.dyn(object=locdl19, location.error=22, dimSize=1000,
ext=.25, time.step=180)

plot(d19_dbbmm)

95

contour(d19_dbbmm, levels=c(.5,.9,.95,.99), add=TRUE)

show(d19_dbbmm)

#plot (d19, type="o", col=6, lwd=2, pch=20, xlab="location_long",
ylab="location_lat")#col= needs numbers for the number of animals

##To store the contours as a SpatiallinesDataFrame use
cnt <- contour (dbbmm, levels=c(.4,.9), add=FALSE)

9. Alternate code to create ABBMM for an individual deer

muleyls <- subset(muleys, id=="D15")
str(muleyl5)

summary <- table(muleyl53UTM_Zone,muley15$id)
summary

muley15$id

muley15$DT <-as.POSIXct(strptime(muleyl5$GPSFixTime, format=’%Y.%m.%d %H:%M:%0S°))
muleyl15$DT

#Sort data to address error in code
muleyl5 <- muleylb[order (muley15$DT),]

loc <- move(x=muleyl15$X, y=muleyl15$Y, time=as.POSIXct(muleyl5$GPSFixTime,
format="%Y.%m.%d %H:%M:%S"), proj=CRS("+proj=utm +ellps=WGS84"),data=muleylb,
animal=muley15$id)

muleys

10. Plot the movement of the animal

par (mfcol=1:2)
plot(loc2, type="o", col=3, lwd=2, pch=20, xlab="location_east",
ylab="location_north")

muleyl5$Date <- as.numeric(muleyl5$GPSFixTime)
timediff <- diff(muleyl5$Date)*24*60

muleyl5 <-muley1l5[-1,]

muleyl5$timediff <-as.numeric(abs(timediff))
str(muley15)

4.7 Characteristic Hull Polygons (CHP)

Now we are going to get into another class of home range estimators that use polygons created
by Delaunay triangulation of a set of relocations and then removing a subset of the resulting
triangles. These polygons can have concave edges, be composed of disjoint regions, and
contain empty portions of unused space within hull interiors. This estimator has been
described in the adehabitatHR package and evaluated on black-footed albatross (Phoebastria
nigripes; Downs and Horner 2009). Polygon-based estimators may be a useful method for a
variety of species but research has been limited.

1. We will use 2 Florida panther that cover various amounts of terrain as shown in their
relocation trajectories (Fig. 3.9).

2. First lets set the working directory for this exercise
96

5000
1

-5000
1

T T T
-5000 0 5000

Figure 4.16: Contours of home range for a mule deer estimated using the dynamic Brow-
nian Bridge Movement Model ({BBMM).

setwd ("C:\\Walter\\WalterSpatialEcologyLab\\SpatialEcologyCourse\\

Chapter4\\CHP\\TwoCats")
install.packages(c("gpclib","aded","adehabitatHR","shapefiles"))
library(adehabitatHR)

3. Now read in the locations and create a Spatial Points Data Frame for the 2 animals by
ID using the code that follows:

twocats <-read.csv("C:\\Walter\\WalterSpatialEcologyLab\\
SpatialEcologyCourse\\Chapter4\\CHP\\TwoCats\\TwoCats2.csv",
header=T)

data.Xy = twocats [C("X" , ||y||)]

4. Creates a class of Spatial Points for all locations with projection defined

xysp <- SpatialPoints(data.xy)
proj4string(xysp) <- CRS("+proj=utm +zone=17N +ellps=WGS84")

5. Creates a Spatial Data Frame from Spatial points

sppt<-data.frame(xysp)

6. Creates a spatial data frame of ID

idsp<-data.frame(twocats[1])

97

7. Merges ID and Date into the same spatial data frame

coordinates (idsp)<-sppt

head(as.data.frame(idsp))
#Results from the above code

ID

143 500310.
143 500245.
143 499991.
143 498974.
143 498441.
143 497221.

y
2907648

2907591
2908045
2908615
2908837
2911378

O W
~N 01 00 O W O N

8. Code for estimation of home range using CharHull from adehabitatHR

res <- CharHull(idsp[,1])
class("res")

9. Code to display the home range in R (Fig. 4.17).

plot(res)

Figure 4.17: Example of CHP home range for 2 Florida panther.

10. Code to compute the home range size for 20—100 percent

MCHu2hrsize (res)

#Results of line of code above

143 157
20 0.4449673 0.01170
30 1.1057584 0.05125

98

40 2.4055332 0.16935
50 3.8577357 0.40980
60 6.5046300 0.96935
70 10.9664133 2.30450
80 21.3727842 5.59020

90 64.5547007 14.73240
100 8659.1896912 856.86470

OR
11. Computes the home range size for 95 percent

MCHu2hrsize(res, percent=95)
OR use

getverticeshr(res, percent=95)
Number of SpatialPolygons: 2

Variables measured:
id area

1 143 186.6443

2 157 30.0052

Keep in mind that CHP estimates in Figure 4.14 are for 20—100 percent with 100% filling in
the entire area traversed by each animal. If you want to visualize core area (i.e., 50%) or 95%
that are commonly reported, the resulting home ranges might be more appropriate
visualization of the area an animal traverses.

4.8 Local Convex Hull (LoCoH)

Local convex hull nonparametric kernel method (LoCoH), which generalizes the minimum
convex polygon method, produces bounded home ranges and better convergence properties
than parametric kernel methods as sample size increases (Getz et al. 2007, Getz and Wilmers
2004). The use of LoCoH also has been investigated for identifying hard boundaries (i.e.
rivers, canyons) of home ranges because it is essentially a non-parametric kernel method using
minimum convex polygon construction. The use of polygons instead of kernels gives LoCoH
the ability to produced hard edges or boundaries that will not overlap into unused spaces
common to kernel methods (Getz et al. 2007). Without getting into to much detail, LoCoH
has 3 modifications that reference the k-nearest neighbor convex hulls (NNCH) in some form.
The 3 terms are fixed k, fixed radius (r-NNCH), and adaptive (a-NNCH) that are comparable
to kernel smoothing of href, Iscv, and plug-in, respectively.

1. We will begin using LoCoH by first downloading the proper script NNCH.R
NOTE: LoCoH GUI will not work in earlier versions of R with adehabitat in
Windows 10 but worked with Windows Vista so may need to download most
recent version of R along with package adehabitatHR

2. Then install the script to use with the a%%habitat package:

http://locoh.cnr.berkeley.edu/data/

source("C:\\Walter\\Chapter3\\Locoh\\NNCH.R")

3. Next we need to install the graphic user interface locoh text_gui.R
source("C:\\Walter\\Chapter3\\Locoh\\locoh_gui.R")

4. To access the GUI we can simply invoke LoCoH using the command
locoh()

The LoCoH GUI will pop up in a separate window in R (Fig. 4.18).
Refer to adehabitat manual and Getz et al. (2007) for more details on LoCoH inputs.

5. Then browse for the appropriate shapefile of animal locations (Fig. 4.18)
6. Choose the algorithm (k, r, a) and enter the value of the variable (Fig. 4.18)
7. Select the option that is appropriate for handling duplicate points (Fig. 4.18)
8. Save resulting home range as shapefiles or pdfs (Fig. 4.18)
"7 LoCoH Homerange Generator S e
An implementation of the powerful LoCoH methods for generating homeranges.
Data Input

Load a tab deliminated text file of points:
Select Textfile | 7
Load an ESR] shapefile of points:

Select Shapefile | 7 | %€ I Load shapefile of GPS locations | '

i no textfile er shapefile is selected, load data from your R environment:

Enter the source of the X-Y data to analyze: T |
Enter the source of the ID data for analysis (optional): j | Select algorithm (k, r, a) |
_Anal_ysis Options |
Use which LoCoH algorithm: Ftedk = Fmedr ¢ Adaptive j
Enter the value of the vaniable (k, r, or dk I 10 _{_ .

[g |
— Enter value of variable

Displace the following amount & 1

When encountering duplicated points: Delete £ j
Treat as Normal <
Enter the isopleth levels: {c(100,90,80,70,60,50,40, j Select new folder path |
Output

Save files to: C:/Walter/WalterSpatialEcologylab/SpatialEcologyCourse/Chapter3/Locoh j
Change Save Directory |
Save a shapefile of the isopleths: I 1

\ :

| Select all outputs needed

Save a pdf of the homerange plot:

Sawve a pdf of an area vs isopleth plot:

BRE

Save a pdf of an area vs variable (k, r, or d) plot:

Help | Cancel! Praf_:55|

Figure 4.18: The LoCoH GUI.

Alternatively, for the purists that don’t like GUIs or need estimates of home range for

multiple animals we can calculate LoCoH directly in R using the original adehabitat package
(Calenge 2007) with any of the 3 algorithms (i.e., k, r, adaptive):

1. Fixed K with k = 10 (k = number of nearest neighbors used in hull construction; Fig.

4.19)
100

http://locoh.cnr.berkeley.edu/data/

install.packages(c("gpclib","aded","adehabitat","shapefiles"),
dependencies=TRUE,

repos="http://cran.cnr.berkeley.edu/")

library(gpclib)

library(adehabitat)

library(ade4)

library(shapefiles)

setwd("C:\\Walter\\WalterSpatialEcologyLab\\SpatialEcologyCourse\\
Chapter4\\Locoh\\NewGPS\\FixedR")

#Loading shapefile is easier than text or CSV that require only x and y
and does not seem to import as easily

#Load the LoCoH home range R code
source("C:\\Walter\\WalterSpatialEcologyLab\\SpatialEcologyCourse\\
Chapter4\\Locoh\\NNCH.R")

#Get input file
panther <- read.csv("C:\\GISprojects\\PantherGIS\\Locoh\\NewGPS_Separated\\
NewGPS.csv")

Create a matrix of x and y in the first 2 columns
data.xy = panther [c("x", nyn)]

Then identify the individuals by ID and run LoCoH home range
ids<-panther$CatID

homerange<-NNCH(data.xy, k=10, id=ids)

plot (homerange)

#Export Home Range to a shapefile from R
NNCH.export.shapefile (homerange,"C:\\GISprojects\\PantherGIS\\Locoh\\
NewGPS_Separated\\FixedK\\FixedK_isopleths")

NOTE: The above analysis used the Fixed k LoCoH method, k =10. We can analyze
our data with different values of k because k is the number of nearest neighbors that are
used in the construction of the minimum convex hulls that make up the foundation of
the homerange. The larger the value of k, the greater area the homerange covers
Additionally, as k increases, the homerange converges towards the Minimum Convex
Polygon. When k equals the number of points in the data set, the home range is the
MCP. (see http://locoh.cnr.berkeley.edu/ rtutorial for further details)

**A good suggested value for k is the square root of the number of points in the data set.

. Fixed r LoCoH (Fig. 4.20)

homerange<-NNCH(data.xy, r=100, id=ids)
or
#To run multiple variables at once:

homerange<-NNCH(xys,r=c(100,200,3?%i400))

3. Adaptive LoCoH
homerange<-NNCH(xys,a=c(1000,1500,2000,2500))

NOTE: Just a little sidebar to compare LoCoH for the Florida Panther home range
using 95% home ranges estimated with BBMM, KDE with href? hygeps and hplug—z'n
Figures 4.2—4.4. The size and shape of LoCoH estimates of home range are dependent
upon the algorith selected (k, r, a) and the value assigned to the algorithm selected.
Exploring all 3 algorithms it becomes apparent that they are not unlike KDE bandwidth
selection in that some or more conservative estimates than others. For example, k =
1,000 (Fig. 4.19) is much larger overall than r = 1,000 (Fig. 4.20). Adaptive = 1,000
(Fig. 4.21) is much more restricted than either k or r so we may consider starting with
an even larger value when using adaptive LoCoH (i.e., a = 10,000; Fig. 4.22).

from

You may notice that even Adaptive LoCoH = 10,000 does not cover the area within the
extent of the home range that k = 1,000 covers. However, k = 1,000 does not extend
above a majority of points that Adaptive = 10,000 does or 95% BBMM.

N

— A

o 2 Kilometers

Figure 4.19: Example of 95% estimate of home range for a Florida Panther using LoCoH
with Fixed K = 1,000.

4. As everything in R is changing and evolving, let’s explore code for home range using
LoCoH with the adehabitatHR package (Calenge 2011). There are not a lot of changes
in code except the name of the command in adehabitatHR is LoCoH.k.area compared to
the NNCH used with the older adehabitat package.

install.packages(c("gpclib","ade4","adehabitatHR","shapefiles"),
dependencies=TRUE, repos="http://lib.stat.cmu.edu/R/CRAN/")
library(gpclib)

library(adehabitat)
102

N

[e] 2 Kilometers
l‘\

Figure 4.20: Example of 95% estimate of home range for a Florida Panther using LoCoH
with Fixed R = 1,000.

library(ade4)
library(shapefiles)

setwd("C:\\Walter\\WalterSpatialEcologyLab\\SpatialEcologyCourse\\Chapter4\\
Locoh\\CodeHR")

#Get input file
panther <- read.csv("C:\\Walter\\WalterSpatialEcologyLab\\SpatialEcologyCourse\\
Chapter4\\Locoh\\CodeHR\\NewGPS.csv")

str (panther)

#Let’s explore initially with one panther with 381 relocations
catl59 <- subset(panther, CatID=="159")
str(cat159)

#Get the relocation data from the source file

data.xy = cat159[c("x","y")]

xysp <- SpatialPoints(data.xy)

#Creates a Spatial Data Frame from

sppt<-data.frame (xysp)

#Creates a spatial data frame of ID
idsp<-data.frame(cat159[1])

#Adds ID and Date data frame with locations data frame
coordinates(idsp)<-sppt

proj4string(idsp) <- CRS(“+proj=u§%3+zone=17 +ellps=WGS84")

o 2 Kilometers
l.\

Figure 4.21: Example of 95% KDE estimate of home range for a Florida Panther using
LoCoH with Adaptive = 1,000.

locsdf <-as.data.frame(idsp)

head (locsdf)

Shows the relocations

plot(data.xy, as.numeric(locsdf[,1]), col="red")

sqrt (381)#Square root of number of locations is suggested by Getz et al. 2007.

Examines the changes in home-range size for various values of k
Be patient! the algorithm can be very long

ar <- LoCoH.k.area(idsp, k=c(16:25))

24 points seems to be a good choice (rough asymptote for all animals)
the k-LoCoH method:

nn <- LoCoH.k(idsp, k=24)

Graphical display of the results

plot(nn, border=NA)

the object nn is a list of objects of class

SpatialPolygonsDataFrame

length(nn)

names (nn)

class(an[[111)

shows the content of the object for the first animal
as.data.frame(nn[[1]])

The 95), home range is the smallest area for which the
proportion of relocations included is larger or equal
to 95% In this case, it is the 340th row of the

N

— A

o 2 Kilometers

Figure 4.22: Example of 95% KDE estimate of home range for a Florida Panther using
LoCoH with Adaptive = 10,000.

SpatialPolygonsDataFrame.

The area covered by the home range panther 159
is equal to 5608.34 ha.

shows this area:

plot(an[[1]1][340,], 1lwd=2)

#The 50% home range code is on line 133
plot(nn[[1]11[133,], add=TRUE)

#The 99% home range code is on line 133

plot(nn[[1]][363,], 1lwd=3, add=TRUE)

ver <-getverticeshr(nn)

ver

plot(ver)

writeOGR(ver,dsn="C:\\Walter\\WalterSpatialEcologyLab\\SpatialEcologyCourse\\
Chapter4\\Locoh\\CodeHR\\FixedK",,layer="FixedK24", driver = "ESRI Shapefile",

overwrite=TRUE)

##0r we can write shapefiles for specific sizes of home range

##0verwrite will not work so must edit path so "FixedK" folder is
created with code below.

ver50 <-getverticeshr(nn, percent=50)

writeOGR(ver50,dsn="C:\\Walter\\WalterSpatialEcologyLab\\SpatialEcologyCourse\\
Chapter4\\Locoh\\FixedK",layer="50FixedK24", driver = "ESRI Shapefile",
overwrite=TRUE)

ver95 <-getverticeshr(an, percenti%g)

writeOGR(ver95,dsn="C:\\Walter\\WalterSpatialEcologyLab\\SpatialEcologyCourse\\
Chapter4\\Locoh\\FixedK",layer="95FixedK24", driver = "ESRI Shapefile",
overwrite=TRUE)

ver99 <-getverticeshr(nn, percent=99)

writeOGR(ver99,dsn="C:\\Walter\\WalterSpatialEcologyLab\\SpatialEcologyCourse\\
Chapter4\\Locoh\\FixedK",layer="99FixedK24", driver = "ESRI Shapefile",
overwrite=TRUE)

4.9 Minimum Convex Polygon (MCP)

We will end the section on home range by constructing a Minimum Convex Polygon (MCP)
estimation of home range originally described for use with identifying animals recaptured
along a trapping grid (Mohr 1947). The reason we placed this at the end of the Home Range
Section is because MCP can be used to describe the extent of distribution of locations of an
animal but not as an estimation of home range size. In fact, reporting size of home range
using MCP should be avoided at all costs unless you can justify its use as opposed to the
plethora of other estimators we have learned in this section. We may use MCP in Section 6 as
it has been suggested as a method to describe the extent of area occupied by a species that
would be available to animals using either second or third order selection of habitat (Johnson
1980). The proper estimator to use to determine the extent of an area an animal uses (i.e.,
habitat available) should be determined for each species and the most appropriate estimator
should be used.

1. First we need to load the appropriate library for MCP, the dataset we will work with,
and clean the data for errors.

library(adehabitatHR)

muleys <-read.csv("C:\\Walter\\WalterSpatialEcologyLab\\SpatialEcologyCourse\\
Chapter4\\MCP\\DCmuleysedited.csv", header=T)

newmuleys <-subset(muleys, muleys$X > 599000 & muleys$X < 705000 &
muleys$Y > 4167000)

#Reassign newmuleys to "muleys" and look at rows 1-20 to see data.
muleys <- newmuleys
muleys[1:20,]

2. Create Spatial Points for all relocations and assign IDs to each location

data.xy = muleys[c("X","Y")]

#Creates class Spatial Points for all locations

xysp <- SpatialPoints(data.xy)

proj4string(xysp) <- CRS("+proj=utm +zone=17 +ellps=WGS84")

#Creates a Spatial Data Frame from
sppt<-data.frame (xysp)

#Creates a spatial data frame of ID
idsp<-data.frame(muleys[2])

#Merges ID and Date into the same spatial data frame
merge<-data.frame (idsp)

#Adds ID and Date data frame with locations data frame

coordinates (merge)<-sppt
plot(merge)
str(merge)

3. We are now ready to create MCPs for our new dataset "merge" by individual animal ID
(Fig. 4.23).

estimates the MCP

cp <- mcp(mergel[,1], percent=95)#(95% is the default)
The home-range size

as.data.frame(cp)

Plot the home ranges

plot(cp)

plot(cpl7,])#only plot deer D8

... And the relocations (Fig. 4.24).
plot(merge, col=as.data.frame(merge)[,1], add=TRUE)
4. We can export the MCPs as shapefiles if needed for use in GIS using the maptools library

library(maptools)
writePolyShape(cp, "MCPhomerange")

5. We can also look at the area of each MCP as we exclude percentages of relocations (i.e.,
outliers). We can exclude 5% of the most extreme relocations or we can compute the
home-range size for various choices of the number of extreme relocations to be excluded,
using the function mcp.area:

hrs <- mcp.area(mergel[,1], percent=seq(50, 100, by = 5))

N

Figure 4.23: Example of 95% estimate of home range for mule deer using Minimum Convex
Polygon.

107

Figure 4.24: Example of 95% estimate of home range for mule deer using Minimum Convex
Polygon with relocations overlayed.

108

Chapter 5

Overlap Indices

Contents
5.1 Percent overlap« v i i i i i i e e e e e e e e e e e e e e e e e 110
5.2 Probability overlap 00 L e e e e e 110
5.3 Bhattacharyya’s affinity o 0oL oo oo 110
5.4 Utilization distribution overlap index 111
5.5 Hellinger’s distance ¢ ¢ 0 i i i i i i ittt 111
5.6 Volume of intersectionindex. 112

Overlap indices can be useful for determining the spatial interactions between animals
using relocations of animals occupying similar areas. There are various overlap indices
available and a good reference is Fieberg and Kochanny (2005). The overlap methods
presented have code and more detailed descriptions in the adehabitatHR package for R
(Calenge 2011). Methods of home range overlap simply require coordinate data after
estimating home range:

#First we can load some data and create some generic utilization distributions
#before estimating overlap:
library(adehabitatHR)

#Creates a Spatial Points Data Frame for 2 animals by ID

twocats <-read.csv("C:\\Walter\\WalterSpatialEcologyLab\\SpatialEcologyCourse\\
Chapter5\\Overlap\\AllHRlocs.csv", header=T)

data.xy = twocats[c("x","y")]

#Creates class Spatial Points for all locatiomns
xysp <- SpatialPoints(data.xy)
proj4string(xysp) <- CRS("+proj=utm +zone=17N +ellps=WGS84")

#Creates a Spatial Data Frame from all locations
sppt<-data.frame (xysp)

#Creates a spatial data frame of ID
idsp<-data.frame(twocats[1])

#Merges ID data frame with GPS locations data frame
#Data frame is called "idsp" comparable to the "relocs" from puechabon dataset
coordinates(idsp)<-sppt

#First we need to create utilization distributions for each panther
ud <- kernelUD(idspl[,1])

109

OR

kernelUD(idsp[,1], h = "href", grid = 200, samed4all = FALSE, hlim = c(0.1, 1.5),
kern = c("bivnorm"), extent = 0.5)

#output of UDs for each panther
image (ud)

NOTE: kerneloverlap will just estimate overlap indices for only the locations

5.1 Percent overlap

HR — Proportion of animal i’s home range that is overlapped by animal j’s home range
(Kernohan et al. 2001).

kerneloverlaphr(idsp[,1], grid=200, method="HR", percent=95, conditional=TRUE)

FP048 FP094 FP110 FP113 FP121 FP128 FP130
FP048 1.0000000 0.2539683 0.3611111 0.67857143 0.2738095 0.2738095 0.56746032
FP094 0.1743869 1.0000000 0.3106267 0.23705722 0.3487738 0.3160763 0.12261580
FP110 0.1834677 0.2298387 1.0000000 0.26612903 0.2862903 0.7379032 0.07661290
FP113 0.5135135 0.2612613 0.3963964 1.00000000 0.2672673 0.3273273 0.51051051
FP121 0.1490281 0.2764579 0.3066955 0.19222462 1.0000000 0.2915767 0.11663067
FP128 0.1326923 0.2230769 0.7038462 0.20961538 0.2596154 1.0000000 0.05769231
FP130 0.7150000 0.2250000 0.1900000 0.85000000 0.2700000 0.1500000 1.00000000

5.2 Probability overlap

PHR — Probability of animal j being located in animal i’s home range and vice versa (i.e.,
volume measure; Ostfeld 1986).

kerneloverlaphr(ud, meth="PHR", conditional=TRUE)

FP048 FP094 FP110 FP113 FpP121 FP128 FP130
FP048 0.9494305 0.1805179 0.42561390 3.1250391 1.1182583 0.3443277 0.0583
FP094 0.2669219 0.8731045 0.73504044 1.2518993 2.1795156 1.6187565 0.0262
FP110 0.4174817 0.3190549 2.67619435 1.6975608 2.8534787 4.5286474 0.0076
FP113 0.7618825 0.2652719 0.52653119 4.8046721 0.9172712 1.7769509 0.0895
FP121 0.2661436 0.3581339 0.93388969 1.2381488 7.5593950 1.7633521 0.0244
FP128 0.1645584 0.2966145 2.33213801 0.8889413 2.5113787 5.3728081 0.0062
FP130 0.6965648 0.1028496 0.07726699 3.4283998 0.4992657 0.1184470 0.0941

5.3 Bhattacharyya’s affinity

BA — a statistical measure of affinity between 2 populations that assumes they use space
independently of one another (Bhattacharyya 1943). Values range from zero (no overlap) to 1

(identical UDs).
110

kerneloverlaphr (ud, meth="BA", conditional=TRUE)

FP048 FP094 FP110 FP113 FP121 FP128
FP048 0.9494305 0.19300494 0.32460745 1.3935548 0.44029134 0.19713762
FP094 0.1930049 0.87310451 0.42688290 0.4840179 0.76378458 0.60678828
FP110 0.3246075 0.42688290 2.67619435 0.77152568 1.39007501 2.96104840
FP113 1.3935548 0.48401785 0.77152577 4.8046721 0.93867516 1.02377927
FP121 0.4402913 0.76378458 1.39007501 0.9386752 7.55939503 1.53768461
FP128 0.1971376 0.60678828 2.96104840 1.0237793 1.53768461 5.37280812
FP130 0.1649118 0.04089019 0.02278675 0.5029844 0.09429946 0.02478678

5.4 Utilization distribution overlap index

UDOI — an UD overlap index similar to Hurlbert index of niche overlap that assumes they
use space independently of one another (Hurlbert 1978). Values range from zero (no overlap)
to 1 (uniformly distributed and have 100% overlap) but can be >1 if both UDs are
nonuniformly distributed and have a high degree of overlap.

kerneloverlaphr(ud, meth="UDOI", conditional=TRUE)

FP048 FP094 FP110 FP113 FP121

FP048 1.88354584 0.058535090 1.200312e-01 2.80355009 0.26373006
FP094 0.05853509 1.215285513 2.373785e-01 0.27909161 0.83782880
FP110 0.12003124 0.237378462 1.218177e+01 0.67534032 2.72820629
FP113 2.80355009 0.279091613 6.753403e-01 34.89888157 1.04793012
FP121 0.26373006 0.837828797 2.728206e+00 1.04793012 128.78219185
FP128 0.04282855 0.596973847 1.608828e+01 1.26045478 3.04242496
FP130 0.03891154 0.002097975 5.547623e-04 0.34714991 0.01114027

5.5 Hellinger's distance

HD — a measure of distance between 2 populations (Matusita 1973).
kerneloverlaphr(ud, meth="HD", conditional=TRUE)

FP048 FP094 FP110 FP113 FP121 FP128 FP130

FP048 0.0000000 1.2858818 1.864468 1.722496 2.762445 2.606872 0.8448535
FP094 1.2858818 0.0000000 1.641808 2.605304 2.627723 2.243287 0.9504207
FP110 1.8644681 1.6418079 0.000000 3.212855 2.730465 1.458391 1.6753830
FP113 1.7224962 2.6053041 3.212855 0.000000 3.301337 3.593655 1.9730367
FP121 2.7624454 2.6277234 2.730465 3.301337 0.000000 3.207293 2.7322091
FP128 2.6068720 2.2432869 1.458391 3.593655 3.207293 0.000000 2.3475101
FP130 0.8448535 0.9504207 1.675383 1.973037 2.732209 2.347510 0.0000000

111

5.6 Volume of intersection index

Volume of intersection under the full UDs of 2 animals (Millspaugh et al. 2000, Seidel 1992).

Values range from zero (no overlap) to 1 (identical UDs).

kerneloverlaphr(ud, meth="VI", conditional=TRUE)

FP048
FP094
FP110
FP113
FP121
FP128
FP130

FP048
0.94973489
0.01570668
0.08158140
0.
0
0
0

35622167

.01568507
.01827549
.01682551

O O O O O O o

#Plot out to visualize overlap
plot(idsp, col="yellow")
uds <- getverticeshr(ud)
plot(uds, add=TRUE)

plot(idsp, col="yellow")
udl <- getverticeshr(ud[[1]])
plot(udl, add=TRUE)
ud2 <- getverticeshr(ud[[2]])
plot(ud2, lwd=2, add=TRUE)
ud3 <- getverticeshr(ud[[3]])
plot(ud3, lwd=3, add=TRUE)
ud4 <- getverticeshr(ud[[4]])
plot(ud4, lwd=4, add=TRUE)

#An alternative way with only the
kerneloverlap(idspl[,1], grid=200,
kerneloverlap(idspl[,1],
kerneloverlap(idsp[,1],
kerneloverlap(idspl[,1],
kerneloverlap(idsp[,1],
kerneloverlap(idsp[,1],

FP094 FP110 FP113 FP121

.015706682 0.081581400 0.356221669 0.015685067
.873256975 0.064468281 0.049201257 0.036421940
.064468281 2.542692800 0.106706398 0.082470262
.049201257 0.106706398 4.804125850 0.126326346
.036421940 0.082470262 0.126326346 7.560716837
.075271608 0.665701571 0.090174304 0.052936190
.001788199 0.002577415 0.039754312 0.000000000

locations

method="HR", percent=95, conditional=TRUE)

grid=200, method="PHR", percent=95, conditional=TRUE)
grid=200, method="BA", percent=95, conditional=TRUE)
grid=200, method="UDOI", percent=95, conditional=TRUE)

grid=200,
grid=200,

method="HD", percent=95, conditional=TRUE)
method="VI", percent=95, conditional=TRUE)

112

Chapter 6

Three-dimensional Analyses

Contents
6.1 Three-dimensional homerange, 113
6.2 Three-dimensional exploration of digital elevation models (DEMs) . .. 118
Figures
6.1 Example home range of a mule deer in 3D using KDE with a) href and
b) b jyg-in bandwidth selection. ... 118
6.2 Example of a Digital Elevation Model in 3D using rasterVis package in
R 120

6.1 Three-dimensional home range

We can calculate 3-dimensional surface area in ArcMap 10.x (ArcMap; Environmental
Systems Research Institute, Redlands, California) using standard 30-m United States
Geological Survey DEMs and the DEM Surface Tools for ArcMap extension (Jenness 2004).
We acquired all DEM data from United States Department of Agriculture, Natural Resource
Conservation Service (http://datagateway.nrcs.usda.gov/). We can then use the surface area
tool to calculate true surface area of the landscape for each grid cell using the DEM elevation
from the surrounding 8 cells. The new grid cell values represented the 3-dimensional surface
area for the land area contained within that cell’s boundaries. We then summed all grid cell
values within the animal’s home-range polygon to derive a topographic home range for each
individual.

Alternatively, we can create home ranges in R and look at them in 3D using the
package rasterVis that now includes the rgl package. We can also view DEMs in R and create
slope, aspect, or hillshade using the rasterVis package.

1. Working directory and upload of packages

rm(list=1s()) #clears the workspace
date()

library(rasterVis)
library(raster)

library(sp)

library(rgdal)
library(maptools)#writeAsciiGrid
library(ks)#hpikde.ud

library(adehabitatHR) 13

library(adehabitatMA)
. Read and prepares the dataset

muleys<-read.csv("DCmuleysedited.csv")
str(muleys)

#Remove extra columns of data

newdata <- muleys[c(-1,-3,-4,-5,-7,-10,-13,-14,-15,-16,-17,-18,-19,-20,-21,-22)]
muleys <- newdata

muleys$GPSFixTime<-as.POSIXct (muleys$GPSFixTime, format="%Y.%m.%d%H:%M:%S")

#Remove outlier locations

newmuleys <-subset(muleys, muleys$X > 599000 & muleys$X < 705000 &
muleys$Y > 4167000 & muleys$id != "D12")

muleys <- newmuleys

summary (muleys$id) #removed deer D12 because to few locations

#Code separate each animal into a shapefile or text file
get input file
indata <- muleys
innames <- unique(muleys$id)
innames <- innames[1:6]
outnames <- innames
begin loop to calculate home ranges
for (i in 1:length(innames)){
data <- indatal[which(indata$id==innames([i]),]
if (dim(data) [1] !'= 0){
export the point data into a shp file
data.xy = datalc("X", "Y")]
coordinates(data.xy) <- ~X+Y
sppt <- SpatialPointsDataFrame(coordinates(data.xy) ,data)
proj4string(sppt) <- CRS("+proj=utm +zone=12 +datum=WGS84")
#writePointsShape (sppt,fn=paste(outnames[i] ,sep="/") ,factor2char=TRUE)
sppt <-datalc(-8,-9)]
write.table(sppt, paste(outnames[i],"txt",sep="."), sep="\t", quote=FALSE,
row.names=FALSE)
}
}

. Reads in each text file for each animal using the In_ list.txt file

List<-read.table("In_list.txt",sep="\t",header=F)
head(List) #"List" contains the filenames (e.g. "D4.txt") of the deer data
sets exported from code above

Generation of results vectors
LOCNB<- rep(0,nrow(List))

AUC <- rep(0,nrow(List))

ROWNB <- rep(0,nrow(List))
COLNB <- rep(0,nrow(List))
TIMEIN <- rep(O,nrow(List))

TIMEOUT <- rep(0,nrow(List))
114

4. Begin loop to create home ranges for each deer using hplug—in

for(i in 1:nrow(List)) {

coords<-read.table(as.character(List[i,]),sep="\t",header=T)
LOCNB[i]<-nrow(coords)
loc<-coords[,c("X", "Y")]

Reference grid : input parameters

RESO <- 100 # grid resolution (m)

BUFF <- 5000 # grid extent (m) (buffer around location extremes)
XMIN <- RESO#*(round(((min(coords$X)-BUFF)/RES0),0))

YMIN <- RESO*(round(((min(coords$Y)-BUFF)/RESQ0),0))

XMAX <- XMIN+RESO* (round(((max(coords$X)+BUFF-XMIN)/RES0),0))
YMAX <- YMIN+RESO*(round(((max(coords$Y)+BUFF-YMIN)/RESQO),0))
NRW <- ((YMAX-YMIN)/RESO)

NCL <- ((XMAX-XMIN)/RESO)

#Generation of refgrid

refgrid<-raster(nrows=NRW, ncols=NCL, xmn=XMIN, xmx=XMAX, ymn=YMIN, ymx=YMAX)
refgrid<-as(refgrid,"SpatialPixels")

#str(refgrid)

#PKDE computation
TIMEIN[i]<-date()

##convert the SpatialGrid class to a raster
sampRaster <- raster(refgrid)

##set all the raster values to 1 such as to make a data mask
sampRaster[] <- 1

##Get the center points of the mask raster with values set to 1
evalPoints <- xyFromCell(sampRaster, 1:ncell(sampRaster))

##Here we can see how grid has a buffer around the locations and trajectory.
##This will ensure that we #project our home range estimates into a slightly
##larger extent than the original points extent (bbox) alone.

#plot (sampRaster)

#lines(loc, cex=0.5, 1lwd=0.1, col="grey")

#points(loc, pch=1, cex=0.5)

##Calculate Hpi from the xy coordinates we used above, Hpi performs bivariate
smoothing whereas hpi

#performs univariate. Bivariate is preferred.

Hpil <- Hpi(x = loc)

##write out the bandwidth matrix to a file as you might want to refer to it later
#write.table(Hpil, paste("hpivalue_", range, ".txt", sep=""), row.names=FALSE,
Sep="\t n)

115

##Create the KDE using the evaluation points
hpikde <- kde(x=loc, H=Hpil, eval.points=evalPoints)

##Create a template raster based upon the mask and then assign the values
##from the kde to the template
hpikde.raster <- raster(refgrid)

hpikde.raster <- setValues(hpikde.raster,hpikde$estimate)
#We can take this raster and put it back into an adehabitat object

##Cast over to SPxDF
hpikde.px <- as(hpikde.raster,"SpatialPixelsDataFrame")

##tcreate new estUD using the SPxDF
hpikde.ud <- new("estUD", hpikde.px)

##Assign values to a couple slots of the estUD
hpikde.ud@vol = FALSE
hpikde.ud@h$meth = "Plug-in Bandwidth"

TIMEOUT[i]l<-date ()

##Convert the UD values to volume using getvolumeUD from adehabitatHR
##and cast over to a raster
udvol <- getvolumeUD(hpikde.ud, standardize=TRUE)

#Write each home range to an ascii file if needed.
#writeAsciiGrid(udvol, paste(substr(List[i,],1,7),"PKDE","asc", sep="."))

. Generate 3D of each home range to plot in separate windows all within the home range
loop.

if (require(rgl)) {

#data(loc)

r <- raster(udvol)

extent (r) <- c(0, 610, 0, 870)
drape <- cut(r, 5)

plot3D(r, drape=drape, zfac=2)
}

}

. We can also run code for creating KDE using href smoothing for comparison

#Begin loop to generate home ranges
for(i in 1:nrow(List)) {

coords<-read.table(as.character(List[i,]),sep="\t",header=T)
head(coords)

loc<-coords[,c("X", "Y")]
coordinates(loc) = c("X", "Y")

116

#Coordinate system info may not be needed
projé4string(loc) = CRS("+proj=utm +zone=12 +datum=WGS84")

#Generation of a reference grid around the location data

#Reference grid : input parameters

RESO <- 100 # grid resolution (m)

BUFF <- 5000 # grid extent (m) (buffer around location extremes)
XMIN <- RESO*(round(((min(coords$X)-BUFF)/RES0),0))

YMIN <- RESO*(round(((min(coords$Y)-BUFF)/RES0),0))

XMAX <- XMIN+RESO* (round(((max(coords$X)+BUFF-XMIN)/RESQ),0))
YMAX <- YMIN+RESO* (round(((max(coords$Y)+BUFF-YMIN)/RESQ),0))
NRW <- ((YMAX-YMIN)/RESQO)

NCL <- ((XMAX-XMIN)/RESO)

#Generation of refgrid

refgrid<-raster(nrows=NRW, ncols=NCL, xmn=XMIN, xmx=XMAX, ymn=YMIN, ymx=YMAX)
refgrid<-as(refgrid, "SpatialPixels")

#str(refgrid)

#LKDE computation

TIMEIN[i]<-date ()
ud <- kernelUD(loc, grid=refgrid, h="href")
TIMEOUT [i]<-date ()

Volume contours computation
udvoll<-getvolumeUD(ud, standardize = FALSE)

#writeAsciiGrid(udvol, paste(substr(List[i,],1,7),"LKDE","asc", sep="."))

if (require(rgl)) {

#data(loc)

rl <- raster(udvoll)

extent(rl) <- c(0, 610, 0, 870)
drape <- cut(ril, 5)

plot3D(rl, drape=drape, zfac=2)
}

}

117

Figure 6.1: Example home range of a mule deer in 3D using KDE with a) href and b)

h bandwidth selection.

plug-in
6.2 Three-dimensional exploration of digital elevation models (DEMs)

1. We simply need to import DEM as in previous exercises to import raster layers

dem <-raster("dcdemasciil2.txt")
plot(dem)

#0r as a .tif file seems to look better
dem2 <- raster("dovecreekdem.tif")
plot(dem2)

if (require(rgl)) {

extent (dem2) <- c(0, 610, 0, 870)
drape <- cut(dem, 5)

plot3D(dem2, drape=drape, zfac=2)
}

#or simply
plot3D(dem2,drape=dem2)

2. We can also create a variety of covariates using DEMs (i.e., slope, aspect)

highGround = dem > 2000

slope = terrain(dem,opt=’slope’, unit=’degrees’)
aspect = terrain(dem,opt=’aspect’,unit=’degrees’)
hill = hillShade(slope,aspect,40,270)
plot(hill,col=grey(0:100/100) ,legend=FALSE)

plot(dem2,col=rainbow(25,alpha=0.35))
windows ()

plot (slope,col=rainbow(25,alpha=0.35))
windows ()

plot (aspect,col=rainbow(25,alpha=0.35))

. We can also investigate various components of the ruggedness of terrain in a DEM with
the function terrain in the raster package. TRI (Terrain Ruggedness Index) is the mean
of the absolute differences between the value of a cell and the value of its 8 surrounding
cells. Values of TRI are lower in flatter areas but high in both steep areas and in steep,
rugged areas (Sappington et al. 2007). TPI (Topographic Position Index) is the
difference between the value of a cell and the mean value of its 8 surrounding cells.
Topographic position (e.g., valley bottom, mid-slope, ridge-top) can provide valuable
information about the geomorphology of the region (Skidmore 1990). Roughness is the
difference between the maximum and the minimum value of a cell and its 8 surrounding
cells. Roughness is the difference between the maximum and the minimum value of a
cell and its 8 surrounding cells.

X <- terrain(dem2, opt=c(’slope’, ’aspect’), unit=’degrees’)
plot(x)

TPI for different neighborhood size:

tpiw <- function(x, w=5) {

m <- matrix(1/(w"2-1), nc=w, nr=w)

m[ceiling(0.5 * length(m))] <- 0

f <- focal(x, m)

x - f

}

tpib <- tpiw(dem2, w=b)

tpi = terrain(dem,opt=’tpi’)
summary (tpi)

plot3D(tpi)

tri = terrain(dem,opt=’tri’)
summary (tri)

plot3D(tri)

ruf = terrain(dem,opt=’roughness’)
plot3D(ruf)

#Load vegetation raster layer textfile clipped in ArcMap
#crop <-raster("crop2012utm.txt")

crop <-raster("crop2012utml2.tif")

plot(crop)

class(crop)

as.matrix(table(values(crop)))

roj4string(crop)
proj g p 119

plot3D(dem,drape=crop)
crop

reclassify the values into 9 groups if needed

all values between O and 20 equal 1, etc.

m <- c(-Inf,0,NA,2, 7, 2, 20, 60, 3, 60, 70, 4, 110, 132, 5, 133, 150, 6, 151, 172, 7,
rclmat <- matrix(m, ncol=3, byrow=TRUE)

rc <- reclassify(crop, rclmat)

plot(rc)

rc

plot3D(dem2,drape=rc)

Figure 6.2: Example of a Digital Elevation Model in 3D using rasterVis package in R.

120

Chapter 7

Landscape Metrics

Contents
7.1 Landscape metrics for asinglearea 121
7.2 Landscape metrics within polygons 00000 122
7.3 Landscape Metrics withinbuffers0 .. 124

Spatial pattern analysis is a large and expanding field that permits the assessment of
various landscape metrics to describe a defined region. Methods were originally introduced by
Kevin McGarigal and were made available on various platforms through Fragstats (McGarigal
and Marks 1995). Various landscape metrics can be estimated in Fragstats that include
derivations of measures ranging from patch size and area to edge density and spatial
configuration of habitat. At the current time, the only package availabe in R is the SDMToolsl
package. Although the SDMTools package is limited, it provides a great deal of landscape
metrics and will be the focus of the code that follows.

7.1 Landscape metrics for a single area

Some research designs may just need landscape metrics for a single area or several study areas
and that is what the SDMToolsl package is able to estimate in the code that follows. While
the single area can be defined by the extent of the raster we imported as in previous chapters,
the ability of the SDMToolsl package to determine patch and class statistics depends on the
area defined by the user from that could be study site, within polygons such as counties or
townships, or within buffers around locations.

library (SDMTools)
library(raster)
library(plyr)
library(maptools)
library(rgdal)

rm(list=1s())

#Load vegetation raster layer textfile clipped in ArcMap
crops <-raster("crop2012utmi2.tif")

plot(crops)

class(crops)

as.matrix(table(values(crops)))

proj4string(crops)

crops

121

http://www.umass.edu/landeco/research/fragstats/fragstats.html

reclassify the values into 9 groups # all values between O and 20 equal 1, etc.

m <- c(-Inf,0,NA,2, 7, 2, 20, 60, 3, 60, 70, 4, 110, 132, 5, 133, 150, 6, 151, 191, 7,
192,Inf ,NA)

rclmat <- matrix(m, ncol=3, byrow=TRUE)

rc <- reclassify(crops, rclmat)

plot(rc)

rc

as.matrix(table(values(rc)))#Look at the resulting vegetation categories

#Now we get into Landscape Metrics with the SDTM Tool
#Calculate the Patch statistics

ps.data = PatchStat(rc)

ps.data

str(ps.data)

#data.frame’: 7 obs. of 12 variables:

#$ patchID :int 1234567
n.cell : int 16 7260 370104 258106 42429 1016835 726939
n.core.cell : int 0 2844 222965 107046 1241 699160 279134

n.edges.perimeter: int 50 7902 206012 261672 98766 406726 662034
n.edges.internal : int 14 21138 1274404 770752 70950 3660614 2245722

area : num 16 7260 370104 258106 42429 ...
core.area : num O 2844 222965 107046 1241
perimeter : num 50 7902 206012 261672 98766 ...
perim.area.ratio : num 3.125 1.088 0.557 1.014 2.328 ...
shape.index : num 3.12 23.11 84.64 128.65 119.86 ...
frac.dim.index :num 1.82 1.71 1.69 1.78 1.9 ...

H OH H H H H HF H H HH
H P P P P P P hHBHBHH

core.area.index : num O 0.3917 0.6024 0.4147 0.0292 ...

#Calculate the Class statistics
cl.data = ClassStat(rc)
cl.data

str(cl.data)
#’data.frame’: 7 obs. of 38 variables:

NOTE the difference in the output from function PatchStat and ClassStat.

7.2 Landscape metrics within polygons

Some research designs may need landscape metrics for several areas that may be available as a
shapefile or some other polygon layer. The code that follows enables researchers to import a
shapefile, extract individual polygons from the shapefile, and clip and generate landscape
metrics for each polgyon. Again, it is important to be sure the number of habitat patches,
patch sizes, and size of the defined poygons will permit estimation of landscape metrics.

1. First we will begin with simply estimating landscape metrics in a pre-defined area

rm(list=1s())
date()

122

#Load all the libraries for this exercise
library(SDMTools)

library(raster)

library(rgdal)

library(maptools)

library(sp)

library(adehabitatHR)

library(rgeos)

library(plyr)

load raster file into R

raster <- raster("county_hab")
raster

load PA shapefile into R

HareCounties <- readOGR(dsn=".", layer="Hare_Counties")
HareCounties
plot (HareCounties)

proj4string(HareCounties)
proj4string(raster)

image (raster)

plot (HareCounties, add=T)

#Let’s project Counties to habitat just to be safe

new.crs <-CRS("+proj=lcc +lat_1=41.95 +lat_2=40.88333333333333
+lat_0=40.16666666666666 + lon_0=-77.75 +x_0=600000 +y_0=0
+ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs")

county <- spTransform(HareCounties, CRS=new.crs)

HareCounties <- county

proj4string(HareCounties)

proj4string(raster)

#Matching projections successful!

row.names (HareCounties)<-as.character (HareCounties$COUNTY_NAM)

names.polygons<-sapply (HareCounties@polygons, function(x) slot(x,"ID"))

text (coordinates(HareCounties), labels=sapply(slot(HareCounties, "polygons"),
function(i) slot(i, "ID")), cex=0.8)

. Import complete shapefile and export individual counties by County name (i.e.,
COUNTY_NAM) as individual shapefiles

indata <- HareCounties

innames <- unique(HareCounties@data$COUNTY_NAM)
innames <- innames[1:2]

outnames <- innames

begin loop to create separate county shapefiles
for (i in 1:length(innames)){
data <- indata[which(indata$COUNTY_NAM==innames[i]),]
if (dim(data) [1] !'= 0){
writePolyShape (data,fn=paste(outnames[i],sep="/") ,factor2char=TRUE)
write.table(innames, "List.txt", eol=".shp\n", col.names=FALSE, quote=FALSE,

row.names=FALSE)
123

}
}

3. We then need to read a list of the counties we want to use in our analysis. Multiple text

7.3

files with shapefile names can be saved if you want to run separately across states or
study regions.

#Read in a list of shapefiles files from above
Listshps<-read.table("List.txt",sep="\t",header=F)
Listshps

. Now we use the plyr package to create a single function that runs multiple functions in a

single statement.

shape <- function(Listshps) {

file <- as.character(Listshps[1,])

shape <-readShapeSpatial(file)

mask <- mask(raster,shape)

Calculate the Class statistics in each county
cl.data <- ClassStat(mask)

}

. The line below also uses the plyr package to run the newly created function (shape) over

the list of shapefiles called in with the List statement (Listshps) by each ID ([.(id)]) in
the Listshps

results <- ddply(Listshps, .(id), shape)
write.table(results, "FragCounty.txt")

Landscape Metrics within buffers

Working directory and upload of packages

library(SDMTools)
library(raster)
library(rgeos)
library(plyr)

. Load vegetation raster layer textfile clipped in ArcMap

crops <-raster("crop2012utmi2.tif")
plot(crops)

class(crops)
as.matrix(table(values(crops)))
proj4string(crops)

reclassify the values into 9 groups

all values between O and 20 equal 1, etc.

m <- c(-Inf,0,NA,2, 7, 2, 20, 60, 3, 60, 70, 4, 110, 132, 5, 133, 150, 6,
151, 172, 7, 180, 183, 8, 189, 191, 9,192,Inf,NA)

rclmat <- matrix(m, ncol=3, byrow=TRUE)

rc <- reclassify(crops, rclmat)

plot(rc)

rc
124

as.matrix(table(values(rc)))

. The code above looks at patch and class metrics for the entire study area or within large
polygons. However, what if we wanted to compare difference in landscape metrics among
the 6 deer? The question is how do you we want to go about doing this? We could run
metrics within the home range of each animal or within a buffered circle for each
location. To begin this, let’s return to our mule deer dataset and import the locations,
cleanup, and make buffers around each location.

#Let’s create buffers around individual locations
muleys <-read.csv("DCmuleysedited.csv", header=T)
summary (muleys$id)

#Reads and prepares the data
muleys<-read.csv("DCmuleysedited.csv")
str(muleys)

#Remove extra columns of data

newdata <- muleys[c(-1,-3,-4,-5,-7,-10,-13,-14,-15,-16,-17,-18,-19,-20,-21,-22)]
muleys <- newdata

muleys$GPSFixTime<-as.POSIXct (muleys$GPSFixTime, format="%Y.%m.%d%H:%M:%S")

#Remove outlier locations

newmuleys <-subset(muleys, muleys$X > 599000 & muleys$X < 705000 &
muleys$Y > 4167000 & muleys$id != "D12")

muleys <- newmuleys

muleys$id <- factor(muleys$id)#removed deer D12 because to few locations

summary (muleys$id)

. Here we can use code to create a function using the using the plyr package that will let
us select all location for each deer, create buffers around each deer, and then run
landscape metrics within these merged buffers.

buff3rd <- function(muleys) {
coords<-data.frame(x = muleys$X, y = muleys$Y)
deer.spdf <- SpatialPointsDataFrame(coords=coords, data = muleys,
proj4string = CRS("+proj=utm +zone=12 +datum=NAD83 +units=m +no_defs
+datum=GRS80 +towgs84=0,0,0"))
settbuff <- gBuffer(deer.spdf, width=1000, byid=FALSE)
buffclip <- mask(rc, settbuff)
buff.data <- PatchStat(buffclip)
newline <- muleys$id
bind <-cbind(newline[1], buff.data)

results <- dlply(muleys, .(id), buff3rd)
results
class(results)

#Now convert results of class "List" to class "data frame"
df <- do.call(rbind.data.frame, results)
df

125

"Export to a table if needed"
write.table(df, "FragCombined.txt")

"Read back into R if needed
data <- read.table("FragCombined.txt", sep="", header=T)
data

. The code above looks at patch and class metrics for each deer by combining all buffers
into one polygon for each deer (i.e., to define available habitat in 3rd order selection).
However, what if we wanted to compare difference in patch statistics among the 6 deer
by averaging metrics across buffers?

#First we need to create buffers then re-assign a new ID for each deer and

#each buffer generated. We then can apply the function to our dataset.

coords<-data.frame(x = muleys$X, y = muleys$Y)

deer.spdf <- SpatialPointsDataFrame(coords=coords, data = muleys,
proj4string = CRS("+proj=utm +zone=12 +datum=NAD83 +units=m +no_defs
+datum=GRS80 +towgs84=0,0,0"))

setbuff <- gBuffer(deer.spdf, width=1000, byid=TRUE)

setbuff

muleys$newID <- paste(muleys$id, setbuff@plotOrder, sep="_")

buff3rdA <- function(muleys) {
bufclip <- mask(rc, setbuff)
buf.data <- PatchStat(bufclip)
}

results2 <- ddply(muleys, .(newID), buff3rdA)
results2

126

Chapter 8

Resource Selection

Contents
8.1 Preparing linear measures ¢ v v o v vt ettt e e e e e 127
8.2 Preparing additional covariates 000000 e oo 133
8.3 Selectionratios oL i e e e e e e e e e 140
8.4 Resource selection functions o o 0o o oo e oo 141
Figures
8.1 Zooming in around mule deer locations using drawExtent in the raster
package in R.. 133

8.2 Selection ratios for Florida panther for 6 habitat types (1-6) using Manly’s
Selectivity Measure. Habitat type is on x-axis and selectivity measure
is on y-axis for a) all panthers and b) each panther. 141

Resource selection is used here in reference to a suite of methods to determine resource
or habitat use by an animal that can be measured in a heirarchical fashion (i.e., First order
through Fourth Order; Johnson 1980). The appropriate method to use is determined by the
data that was collected during the study that is often controlled by logistics, funding, and
population size of the species studied. As methods to identify animal use of the landscape
(i.e., GPS technology) and measures of resource or habitats (i.e., GIS layers) have improved,
the methods to analyze data has evolved as well (Cooper and Millspaugh 2001, Manly et al.
2002). Several commonly used measures of habitat use or resource selection include:

1. Compositional Analysis (Aebischer et al. 1993)

2. Mahalanobis Distance (Clark et al. 1993)

3. Selection Ratios (Manly et al. 2002)

4. Resource Selection Functions (Cooper and Millspaugh 2001)

Before we begin with resource selection, we first need to prepare the data that we are
interested in incorporating into our modeling efforts. Whether these are linear measures (e.g.,
distance to roads) or landscape/topographic characteristics (e.g., elevation, slope),
summarizing variables as used or available can be completed all in R. Some of these methods
were presented in Chapter 1 so we will build on that before estimating RSF/RSPF in later
sections of this chapter.

8.1 Preparing linear measures

First we will begin with determining the distance between several features. In our first
example, we want to measure distance from each mule deer location to the nearest stream if it

is determined a priori that water or riparian habitats influence mule deer distribution in our
study area. While this may not seem like a very complicated process, there are numerous
steps needed to achieve this feat. We will need to use the package spatstat that will help us in
creating individual segments with nodes for linear features such as roads and

streams /rivers.

1. Working directory and upload of packages

library(raster)
library(sp)
library(rgdal)
library(lattice)
library(rgeos)
library(spatstat)

2. Load mule deer location and clean them up like so many times before.

muleys <-read.csv("DCmuleysedited.csv", header=T)
summary (muleys$id)

#Remove outlier locations

newnuleys <-subset(muleys, muleys$X > 599000 & muleys$X < 705000 &
muleys$Y > 4167000 & muleys$id != "D12")

muleys <- newmuleys

#Make a spatial data frame of locations after removing outliers

coords<-data.frame(x = muleys$X, y = muleys$Y)

crs<-"+proj=utm +zone=12 +datum=NAD83 +units=m +no_defs +ellps=GRS80
+towgs84=0,0,0"

#Convert to a SpatialPointsDataFrame

deer.spdf <- SpatialPointsDataFrame(coords= coords, data = muleys,
proj4string = CRS(crs))

deer.spdf[1:5,]

class(deer.spdf)

proj4string(deer.spdf)

3. Load the necessary road and rivers shapefiles already in Albers projection to match
previous vegetation raster.

roads<-readOGR(dsn=".",layer="AlbersRoads")
rivers<-readOGR(dsn=".",layer="AlbersRivers")
plot(roads,pch=16)

points(deer.spdf, col="red")
plot(rivers,add=T, col="blue",pch=16)

4. We need to project the deer.spdf to Albers to match other layers

Albers.crs <-CRS("+proj=aea +lat_1=29.5 +lat_2=45.5 +lat_0=23 +lon_0=-96
+x_0=0 +y_0=0 +datum=NAD83 +units=m +no_defs +ellps=GRS80
+towgs84=0,0,0")

deer.albers <-spTransform(deer.spdf, CRS=Albers.crs)

points(deer.albers, col="red")

class(deer.albers)

roj4string(deer.albers)
proj g 198

deer.spdf[1:5,]
deer.albers[1:5,]

. Determine boundary box around mule deer locations to create a layer to clip and zoom
in.

bbox (deer.albers)

bbl <- cbind(x=c(-1106865,-1106865,-1145027,-1145027, -1106865),
y=c (1695607, 1729463,1729463,1695607,1695607))

AlbersSP <- SpatialPolygons(list(Polygons(list(Polygon(bb1)),"1")),
proj4string=CRS(projé4string(deer.albers)))

plot (AlbersSP)

. Load vegetation raster layer tif that came in the Albers projection from the online
source.

crops <-raster("crop2012utmi2.tif")

#Check to see all our layers are now in Albers projection
proj4string(crops)

projéstring(deer.albers)

proj4string(AlbersSP)

plot(crops)
points(deer.albers, col="red")

. Clip the raster using the bounding box (AlbersSP) created in step 5.

bbclip <- crop(crops, AlbersSP) #Start re-run of code here after new clip##it#ittiits
cliproads <- glntersection(roads, AlbersSP, byid=TRUE)
cliprivers <- glntersection(rivers, AlbersSP, byid=TRUE)

#Plot all to see if it is working for us and zoomed in to mule deer locatioms.
plot(bbclip)

points(deer.albers, col="red")

plot(cliproads, add=T)

plot(cliprivers, col="blue",add=T)

8.1.1 Formatting layers for package spatstat

Code below will be for use with the spatstat package to convert segments of line layers (e.g.,
roads, rivers) to lines to enable distance to feature from deer locations. Most calculations with
spatstat require 3 new classes so most code is created to achieve this goal:

"owin" Observation windows
"ppp" Planar point patterns
"psp" Planar segment patterns

1. Let’s start with the road layer by converting a single line to a set of segments packaged

as a function.

foo <- function(cliproads){

x <- cliproads@Lines[[1]]@coords
cbind(

head(x,-1),

tail(x,-1))}
129

#The function can be applied successively to each line in the list we extracted
#from roads. Results are output as a list, then converted to a matrix.

segs.lst <- lapply(cliproads@lines,foo)

segs <- do.call(rbind,segs.1lst)

segs.x <- c(segs[,c(1,3)])
segs.y <- c(segs[,c(2,4)])
segs.owin <- as.owin(c(range(segs.x),range(segs.y)))

#The segments as a planar segment pattern:
segs.psp <- as.psp(segs, window=segs.owin)
plot(segs.psp)

points(deer.albers)

segs.psp

lengths.psp(segs.psp)

#We can cut road segments into lengths we control as well
dist <- pointsOnLines(segs.psp, eps=1000)

. We need to back up a moment to handle the mule deer locations. Need to convert
deer.albers from SPDF back to a dataframe because we need xy coordinates to be in
Albers. NOTE: If all data is in UTM 12N or a similar projection from the beginning
then no need for the next step. Then we need to make mule deer xy coordinates a planar
point patter (i.e., ppp) for use in package spatstat.

deer2 <-as.data.frame(deer.albers)
deer2[1:5,]

newdeer <-cbind(deer2$x,deer2$y)
newdeer[1:5,]

Xy.ppp <- as.ppp(newdeer,W=bdy)
plot (xy.ppp)

. Also we need to back up and make the bounding polygon (AlbersSP) a class owin in
order to proceed with functions in package spatstat.

AlbersSPDF <- as(AlbersSP, "SpatialPolygonsDataFrame")

#poly <- AlbersSPDF@polygons[[1]]@Polygons[[1]]@coords#These 2 lines won’t work
#anymore due to gpclib issues

#bdy.gpc <- as(poly, "gpc.poly")

bdy.gpc <- as(AlbersSPDF, "gpc.poly")

bdy.owin <- gpc2owin(bdy.gpc)#new code using polyCub package

bdy <- as.polygonal (bdy.owin)

Xy.ppp <- as.ppp(newdeer,W=bdy)

plot (xy.ppp)

#lLet’s check to determine if mule deer locations, bounding box, and road layer
#are in the proper classes to proceed.

is.owin(bdy.owin)

#[1] TRUE

is.ppp(xy.ppp)

#[1] TRUE
130

is.psp(segs.psp)
#[1] TRUE
#A11l is TRUE so now we can move forward with the analysis

. Now we can determine the distance from mule deer locations (xy.ppp) to the nearest road

roaddist <- nncross(xy.ppp, segs.psp)$dist
roaddist

#0r identify segment number closest to each point

v <- nearestsegment (xy.ppp,segs.psp)#Ildentifies segment number not a distance
plot (segs.psp)

plot(xy.pppl[7501], add=TRUE, col="red")

plot(segs.psplv[7501]1], add=TRUE, lwd=5, col="red")

. Now we do the same to a river layer by converting a single line to a set of segments
packaged as a function.

foo <- function(cliprivers){

X <- cliprivers@Lines[[1]]@coords
cbind(

head(x,-1),

tail(x,-1))}

#Again, the function is applied successively to each line in the list then
#results are output as a list, then converted to a matrix.

rivs.lst <- lapply(cliprivers@lines,foo)

rivs <- do.call(rbind,rivs.1lst)

rivs.x <- c(rivs([,c(1,3)])
rivs.y <- c(rivs[,c(2,4)])
rivs.owin <- as.owin(c(range(rivs.x) ,range(rivs.y)))

#The segments as a planar segment pattern:

rivs.psp <- as.psp(rivs, window=rivs.owin)

plot(rivs.psp)

points(deer.albers)

is.psp(rivs.psp)

#[1] TRUE

#A11l is TRUE so now we can move forward with the analysis

. Now we can determine the distance from mule deer locations (xy.ppp) to the nearest
river.

rivdist <- nncross(xy.ppp, rivs.psp)$dist
#rivdist #activate this code to see all distances

#0r identify segment number closest to each point
riv <- nearestsegment (xy.ppp,rivs.psp)
plot(rivs.psp, lwd=1)

plot(xy.ppp[1], add=TRUE, col="red")
plot(rivs.psplriv[1]], add=TRUE, lwd=5, col="red")

#This code allows us to determine the nearest river to each deer location

plot(xy.ppp[290], add=TRUE, col="blue")
plot(rivs.psplriv[290]], add=TRUE, lwd=5, col="blue")

8.1.2 Summarizing linear measures as covariates

1. We can then summarize the distances in some meaningful way for analysis. Instead of
representing distance to road as individual numerical values we can bin the distances in
some categories we determine appropriate for our research objective.

br <- seq(0,4000,500)

1bl <- paste(head(br,-1),tail(br,-1),sep="-")
road.tbl <- table(cut(roaddist,breaks=br,labels=1bl))
Rdresults <- road.tbl/sum(road.tbl)

Rdresults

brl <- seq(0,4000,500)

1bl1 <- paste(head(bril,-1),tail(brl,-1),sep="-")
river.tbl <- table(cut(rivdist,breaks=brl,labels=1bl1l))
Rivresults <- river.tbl/sum(river.tbl)

Rivresults

#0r we can place each distance into a category or Bin for each deer.

library(Rcmdr)

BinRoad <- bin.var(roaddist, bins=5, method=’intervals’,
labels=c(’1’,’27,°3°,°4’,°57))

BinRoad

BinRivers <- bin.var(rivdist, bins=5, method=’intervals’,
labels=c(’1’,’2°,°3,747,°5))
BinRoad #end re-run here##########

#lLet’s try to add these distance covariates back to the original muley dataset.
Dist <- cbind(BinRoad,BinRivers)
muleys <- cbind(muleys, Dist)#Will not work because 2 locations are out of the box

2. We need to create a new boundary box that encompasses all location so as not to miss
those 2. We can do this by zooming into the raster around all of the mule deer locations
using a clever function in raster.

plot(veg)

points(deer.albers, col="red")

e <- drawExtent ()

#click on top left of crop box and bottom right of crop box create zoom

bbox(deer.albers) #use these coordinates to create a boundary box

bb2 <- cbind(x=c(-1097405,-1097405,-1154795,-1164795, -1097405),
y=c (1686777, 1739607,1739607,1686777,1686777))

AlbersSP <- SpatialPolygons(list(Polygons(list(Polygon(bb2)),"1")),
proj4string=CRS(proj4string(deer.albers)))

plot (AlbersSP)

3. Now re-run code from clipping roads/streams to BinRoad and use cbind function to add

binned distances to muleys dataset. 132

Dist <- cbind(BinRoad,BinRivers)
muleys <- cbind(muleys, Dist)

1850000
L

1750000
L

1650000

1550000
i

1700000 1710000 1720000 1730000 1740000

1690000

-1150000 -1140000 -1130000 -1120000 -1110000 -1100000

Figure 8.1: Zooming in around mule deer locations using drawExtent in the raster package
in R.

8.2 Preparing additional covariates

We may often be interested in assessing various covariates that may influence resource
selection of our study animals. If we have a priori knowledge that elevation or slope may
influence selection for or use of portions of the landscape then we need to create these layers
for analysis. While this may not seem like a very complicated process because it is routinely
done in ArcMap, those same available layers can be used and manipulated in R as in Chapter
1. We can then create slope, aspect, hillshade or other variables within R using concepts in
Chapter 6 and extract those covariates for use in modeling all within the R environment.

8.2.1 Manipulating raster layers for inclusion in modeling procedures

1. Numerous packages will be needed for various components of this exercise

library(sp)

library(lattice)
133

library(rgdal)#readOGR
library(rgeos)#glntersection
library(raster)#to import rasters
library(adehabitatHR)
##library(maptools)#readAsciiGrid

. Load, clean up, and convert mule deer locations into a Spatial Points Data Frame
similar to above exercise for linear measures.

muleys <-read.csv("DCmuleysedited.csv", header=T)
str(muleys)

#Remove outlier locations

muleys <-subset(muleys, muleys$X > 599000 & muleys$X < 705000 & muleys$Y > 4167000
& muleys$id != "D12")

muleys$id <- factor(muleys$id)#This step must be done to completely remove D12

summary (muleys$id)

#Let’s assign sequential numbers as ID’s for each location for use later
seqIDs <-c(l:nrow(muleys))
muleys <- cbind(muleys,seqIDs)

#Make a spatial data frame of locations after removing outliers

coords<-data.frame(x = muleys$X, y = muleys$Y)

utm.crs<-"+proj=utm +zone=12 +datum=NAD83 +units=m +no_defs +ellps=GRS80
+towgs84=0,0,0"

utm.spdf <- SpatialPointsDataFrame(coords= coords, data = muleys, proj4string =
CRS(utm.crs))

Albers.crs <-CRS("+proj=aea +lat_1=29.5 +lat_2=45.5 +lat_0=23 +lon_0=-96 +x_0=0
+y_0=0 +datum=NAD83 +units=m +no_defs +ellps=GRS80 +towgs84=0,0,0")
deer.spdf <-spTransform(utm.spdf, CRS=Albers.crs)

. We can create a bounding box around locations and clip as above or using coordinates of
box.

bbox (deer.spdf)

bbl <- cbind(x=c(-1106865,-1106865,-1145027,-1145027, -1106865),
y=c (1695607, 1729463,1729463,1695607,1695607))

AlbersSP <- SpatialPolygons(list(Polygons(list(Polygon(bb1)),"1")),
proj4string=CRS(proj4string(deer.spdf)))

plot (AlbersSP)

points(deer.spdf, col="red")

#Let’s buffer around the bounding box to be sure it encompasses all locations
buffSP <- gBuffer (AlbersSP,width=1000)

plot (buffSP)

points(deer.spdf,col="red")

#NOTE: Be sure that the raster layers extend beyond AlbersSP to avoid errors later.

. Now it is time to import some raster layers of the covariates we are interested in for our
analysis. Start with raster of vegetation from the 2012 NRCS Crop data that is a nice
dataset that is crop specific for each year. Crop data can be found at the NRCS
webpage Cropland Data Layer that can be accessed for each county of each state.

http://datagateway.nrcs.usda.gov/GDGOrder.aspx

crops <-raster("crop2012albers.txt")
plot(crops)

class(crops)
as.matrix(table(values(crops)))
proj4string(crops)

crops

Reclassify crops raster from above into 9 groups as in previous exercises.
all values between O and 20 equal 1, etc.
m <- c(-Inf,0,NA,2, 7, 2, 20, 60, 3, 60, 70, 4, 110, 132, 5, 133, 150,
6, 151, 172, 7, 180, 183, 8, 189, 191, 9,192,Inf,NA)
rclmat <- matrix(m, ncol=3, byrow=TRUE)
rc <- reclassify(crops, rclmat)
plot(rc)
rc
as.matrix(table(values(rc)))#Confirms new number of vegetation categories

#Clip using buffSP polygon created earlier to reduce size of raster (if needed).
bbclip <- crop(rc, buffSP)

plot(bbclip)
points(deer.spdf,col="red")
plot (buffSP, add=T)

#Be sure all are in Albers projection before moving forward.
proj4string(bbclip)

proj4string(deer.spdf)

proj4string (buffSP)

. We also want to look at elevation and covariates related to elevation (e.g., slope, aspect)
from Section 6.2. These can be created directly in R using the terrain function in the
raster package.

elevation <- raster("dem_albers.txt")
image(elevation, col=terrain.colors(10))
contour(elevation, add=TRUE)

#Create slope and aspect

slope = terrain(elevation,opt=’slope’, unit=’degrees’)
aspect = terrain(elevation,opt=’aspect’, unit=’degrees’)
elevation#NOTE the number of cells for all 3 layers
slope

aspect

#Clip the 3 layers within the buffSP around locations if needed
demclip <- crop(elevation, buffSP)

sloclip <- crop(slope, buffSP)

aspclip <- crop(aspect, buffSP)

. Cast over all 4 layers to a Spatial Grid Data Frame to permit combining into one layer.
One very important note here is that the 3 lines of code below may not work on a
standard desktop PC because the memory will be maxed out.

Fortunately, we have a Super Computer as we call it that was custom built by Jeff, our

IT guy, with specs as follows:

HAHHHHBHHAH R R B H AR ARG H B R R B H RS H AR R
Intel Core i7-3930K Sandy Bridge-E 3.2GHz LGA 2011 Six-Core Processor
G.SKILL Ripjaws Z Series 32GB (4 x 8GB) 240-Pin DDR3 SDRAM

Western Digital WD Black WD100O2FAEX 1TB

7200 RPM 64MB Cache SATA 6.0Gb/s 3.5" Internal Hard Drive

HAEHBHHBHHAH B HBHHHFHAH R H RS HBHH AR B HBHHRHH AR RS H RS HBHH AR B H B HRFHAHRRHH
nlcd <- as.data.frame(as(rc, "SpatialGridDataFrame"))

elev <- as.data.frame(as(demclip, "SpatialGridDataFrame"))

slo <- as.data.frame(as(sloclip, "SpatialGridDataFrame"))

asp <- as.data.frame(as(aspclip, "SpatialGridDataFrame"))

#Now check to be sure the number of cells in each layer are the same
#before proceeding the next step of combining layers.

str(elev)

str(slo)

str (asp)

#Combine elevation, slope and aspect into one layer.
layers = cbind(nlcd,elev, asp, slo)

head (layers2)

layers = layers[,-c(2,3, 5,6,8,9)]

names (layers) = c("nlcd","elevation""aspect", "slope",, "x", "y")
head(layers)

#Turn aspect into categorical variable is recommended
aspect_categorical = rep(NA, nrow(layers))

aspect_categorical[layers$aspect < 45 | layers$aspect >= 315] = "N"
aspect_categorical [layers$aspect >= 45 & layers$aspect < 135] = "E"
aspect_categorical [layers$aspect >= 135 & layers$aspect < 225] = "3S"
aspect_categorical [layers$aspect >= 225 & layers$aspect < 315] = "W"

table (aspect_categorical)
table(is.na(aspect_categorical))
layers$aspect_categorical = aspect_categorical
head(layers)

. We can now begin the task of sampling each of our locations using the code below. This
code was created by Ryan Nielsen of West Inc. and was very helpful in this exercise.
Alternatively, we could have extracted each covariate layer by layer and included it in
our dataset.

Grab values for points created above

grab.values = function(layer, x, y){

layer is data.frame of spatial layer, with values ’x’, ’y’, and ____7
x is a vector

y is a vector

if(length(x) != length(y)) stop("x and y lengths differ")

z = NULL

for(i in 1:length(x)){

dist = sqrt((layer$x - x[i])"2 + (layer$y-y[il)~2)

#Could adjust this line or add another line to calculate moving window or
136

#distance to nearest feature

z = rbind(z, layer[dist == min(dist),][1,])
}

return(z)

}

#Grab all values for used and available points based on combined layer data
#set that can take several minutes.

used = grab.values(layers, muleys$X, muleys$Y)

used$x = muleys$X

used$y = muleys$Y

used$animal_id = muleys$id

used$use = 1

used[1:10,]

#Create MCP for all locations for each deer by ID (3nd order selection).
cp = mcp(deer.spdf[,2],percent=100)

as.data.frame(cp)

Plot the home ranges and relocatiomns.

plot(cp)

plot(deer.spdf, col=as.data.frame(deer.spdf)[,2], add=TRUE)

. We also need to get some measure of what is available for our mule deer population (2nd
order selection) or for each mule deer (3rd order selection). We really do not understand
the need for 2nd order selection unless you are looking at deer across different
landscapes but hardly seems necessary for deer occupying similar areas such as our mule
deer in southwestern Colorado. Below we will focus on 3rd order selection with used
locations for each deer being compared to available locations randomly determined
within each deer’s MCP.

#Determine the habitat available using all code below

#First create random sample of points in each polygon

random <- sapply(slot(cp, ’polygons’), function(i) spsample(i, n=500,
type=’random’, offset=c(0,0)))

plot(cp) ; points(random[[1]], col=’red’, pch=3, cex=.5)

#The number in the line of code above in double brackets changes polygons

stack into a single SpatialPoints object
random.merged <- do.call(’rbind’, random)

#Extract the original IDs
ids <- sapply(slot(cp, ’polygons’), function(i) slot(i, ’ID’))

#Determine the number of ACTUAL sample points generated for each polygon
newpts <- sapply(random, function(i) nrow(i@coords))

#Nice check of how many points generated per polygon
newpts

generate a reconstituted vector of point IDs

pt_id <- rep(ids, newpts)

promote to SpatialPointsDataFrame
137

10.

11.

random.final <- SpatialPointsDataFrame(random.merged,
data=data.frame(poly_id=pt_id))

#Plot random final on MCPs
plot(cp) ; points(random.final, col=random.final$poly_id, pch=3, cex=0.5)
random.final

#Make random.final a data frame to extract raster covariates for each
random.df = as.data.frame(random.final,coords=coords)
names (random.df) = c("ID", "x", "y")

#Grab covariates as we did for mule deer locations above
available = grab.values(layers, random.df$x, random.df$y)
available$x = random.df$x

available$y = random.df$y

available$animal_id = pt_id

available$use = 0

available[1:10,]

. Bind together mule deer locations with covariates extracted (used) and random locations

within each polygon by deer ID (available) into a master dataset for modeling (data).
The (use) column identifies 1 as (used) and 0 as (available)

data = rbind(available, used)

str(muleys)

#A quick check of the data to determine if correct number of records.
9623 locations used +

3000 locations available (6 animals X 500 random locations)

=12623 confirmed in code below:

str(data)

’data.frame’: 12623 obs. of 8 variables:

$ elevation : int 2048 2045 2015 2031 2079 2033 2085 2128 2021 2079 ..
$ x : num 676648 676664 674248 673250 679159 ...

$y : num 4190681 4188509 4187365 4187137 4188607 ...

$ aspect : num 102.5 330.9 296.6 88.7 90 ...

$ slope :num 8.74 2.46 6.38 1.02e+01 1.02e-13 ...

$ aspect_categorical: chr "E" "N" "W" "E" ...

$ animal_id : chr "D15" "D15" "D15" "D1b5"

$ use :num 0000000000 ...

The above code is for 3rd order selection within home range of each deer. We could also
look at 3rd order selection within a buffered circle around each mule deer location that is
common in Discrete Choice Models. The code is similar except the initial steps of
creating buffered polygons and obviously includes a lot more polygons than simply
MCPs for each deer. Determining the daily distance moved was done in Chapter 3 but
new code is available to estimate for each deer or all deer combined.

First create buffered circles with radius of 500 m

#Be sure to include "id= " so each buffer corresponds to the specific deer
#location code (i.e., seqIDs) created earlier.
settbuff=gBuffer(deer.spdf, width=500, id=seqIDs, byid=TRUE)

#First create random sample of points in each polygon
13

ranbuff <- sapply(slot(settbuff, ’polygons’), function(i) spsample(i, n=5,
type=’random’, offset=c(0,0)))
plot(settbuff) ; points(ranbuff[[100]], col=’red’, pch=3, cex=.5)

#Stack into a single SpatialPoints object
ranbuff .merged <- do.call(’rbind’, ranbuff)

#Extract the original IDs
buff_ids <- sapply(slot(settbuff, ’polygons’), function(i) slot(i, ’ID’))

#Determine the number of ACTUAL sample points generated for each polygon
buffpts <- sapply(ranbuff, function(i) nrow(i@coords))
buffpts[1:20] #Nice check of how many points generated per polygon

#Generate a reconstituted vector of point IDs
buffpt_id <- rep(buff_ids, buffpts)

promote to SpatialPointsDataFrame
buff.final <- SpatialPointsDataFrame (ranbuff.merged,
data=data.frame(poly_id=buffpt_id))

#Plot buff.final on buffered circles
plot(settbuff); points(buff.final, col=random.final$poly_id, pch=3, cex=0.5)

buff.final[1:20,]

make ’buff.final’ a data.frame

buffer.df = as.data.frame(buff.final,coords=coords)

names (buffer.df) = c("seqIDs", "x", "y")

buffer.df[1:20,]

str(random.df)

str(buffer.df)

#N = 48115 or 9623 mule deer coordinates X 5 random locations per coordinate

The first line below required 88 minutes on the Super Computer!!
buff_avail = grab.values(layers, buffer.df$x, buffer.df$y)
buff_avail$x = buffer.df$x

buff_avail$y = buffer.df$y

buff_avail$animal_id = buffpt_id

buff_avail$use = 0

buff_avail[1:10,]

alt_data = rbind(buff_avail, used)

str(muleys)

#9623 locations used +

str(buff_avail)

#48115 locations available (9623 coordinates X 5 random locations per coordinate)
#= 57738 #Confirmed in code below

str(alt_data)

head(alt_data)#First locations are used (i.e., used = 1)

tail(alt_data)#Final locations are available (i.e., used = 0)

139

#0r try
table(alt_data$use)
0 1
#48115 9623

We are going to focus the remainder of this chapter on Selection Ratios and Resource
Selection Functions (RSFs) because Selection Ratios identify a general use of habitat given
what is available that can be further explored and studied through use of RSFs. Resource
Selection Functions are spatially-explicit models that predict the (relative) probability of use
by an animal at a given area/location during a given time, based on the environmental
conditions that influence or account for selection. There are numerous types of RSFs that can
be performed based on the availability of data collected during the study and there is an
entire book or chapter of a book devoted to the topic of resource selection and sampling
designs for radiotelemetry studies (Manly et al. 2002, Cooper and Millspaugh 2001, Erickson
et al. 2001, Leban et al. 2001).

8.3 Selection ratios

widesI may be used to explore resource selection by animals when designs I occur (i.e., habitat
use and availability are measured at the population level because individual animals are not
identified). The Manly selectivity measure (selection ratio = used/available) is computed and
preference/avoidance is tested for each habitat, and the differences between selection ratios
are computed and tested (Manly et al. 2002).

widesII computes the selection ratios with design II data (i.e., the same availability for
all animals, but use is measured for each one). An example would be to place a minimum
convex polygon around all animal locations throughout a study site and define this as
"available" to all animals.

widesIII computes the selection ratios for design III data (i.e., use and the availability
are measured for each animal with use and availability unique to each individuals movements
and habitat use).

Note that all these methods rely on the following hypotheses: (i) independence
between animals, and (ii) all animals are selecting habitat in the same way (in addition to
"traditional" hypotheses in these kinds of studies: no territoriality, all animals having equal
access to all available resource units, etc. (Manly et al. 2002).

library(ade4)
library(adehabitat)

used<-read.csv("C:\\Walter\\WalterSpatialEcologyLab\\SpatialEcologyCourse\\
Chapter5\\SelectionRatios\\Used.csv",header=T)

rand<-read.csv("C:\\Walter\\WalterSpatialEcologyLab\\SpatialEcologyCourse\\
Chapter5\\SelectionRatios\\Available3rd.csv", ,header=T)

PVT Code for VegRSF

used$DUMMY <- 1

rand$DUMMY <- 1

tux <- xtabs(used$DUMMY ~ used$ID + used$VegRSF)
tuxl <- xtabs(rand$DUMMY ~ rand$ID + rand$VegRSF)
pvt.W <- widesIII(tux,tuxl)

vt.W
P 140

par (mfrow=c(1,2))
plot(pvt.W)

Manly selectivity measure Manly selectivity measure

Giobal Selection ratios (+/- Cl)
10 s 28
L
|
-
P
|
Selection ratios

Figure 8.2: Selection ratios for Florida panther for 6 habitat types (1-6) using Manly’s
Selectivity Measure. Habitat type is on x-axis and selectivity measure is on y-axis for a)
all panthers and b) each panther.

Manly’s Selectivity Measure in a Design III would suggest that Florida panther are
using habitat types 1 and 2 more than they are available (Figure 5.1a). Use of the 6 habitat
types for each panther identifies variability between each panther but the trend appears
similar across all study animals. Selectivity measure is a general first step look at resource
selection but does not really use all the data we have available to use in a Design III study.
Although methods of resource selection can be conducted regardless of study design (i.e., I, II,
I1T), the remaining sections of this chapter will focus on Design III because it provides the
most detail for each individual animal and should be the goal of most study designs on wildlife
for resource selection analysis.

8.4 Resource selection functions

Resource selection requires "used" and "available" habitats and the study designs would take
up an entire course all on there own. In this section, we hope to show how we can go about
this approach all in R and not need to involve excel spreadsheets with multiple columns of
data. More details on methods to estimate resource selection functions (RSFs) or resource
selection probability funcitons (RSPFs) can be found in the literature (Manly et al. 2002,
Millspaugh et al. 2006, Johnson et al. 2006). We do not expect you to be experts in RSFs
after this section but we want you to be able to implement these methods in R after
determining study design, data collection protocol, and methodology to best achieve your
research objectives.

8.4.1 Logistic regression

As we move forward in this section, we are going to assume that your study design and data
assessment prior to this section addresses any collinearity in predictor variables and a priori
141

hypothesis were used to generate your models used in logistic regression. There are several
ways to to calculate RSFs in R using logistic functions that can assess population level or
intra-population variation. The use of General Linear Models using the (glm) command using
the Ime/ package is often used for estimating population-level models only. Alternatively, we
can assess intra-population variation using the Imer function. Assessing intra-population
variation is a mixed-model approach that provides a powerful and flexible tool for the analysis
of balanced and unbalanced grouped data that are often common in wildlife studies that have
correlation between observations within the same group (Gillies et al. 2006).

1. Begin by importing packages needed for resource selection
library(lme4)

2. We may need to identify some numerical data as factors for analysis prior to
implementing resource selection analysis.

Panther3aorder <-read.csv("AllPantherUA3.csv", header=T)
Panther3aorder$VegRSF=factor (Panther3aorder$VegRSF)
Panther3aorder$Status=factor (Panther3aorder$Status)

str (Panther3aorder)

3. We may need to use code that changes Reference Categories of our data. For our
analysis we are going to define reference category of used habitat as Status = 1. We are
also going to assign a reference category for habitat as category 5 (i.e., developed) by the
command VegRSF = 5 that was based on Selection Ratios.

fml <- glmer(relevel(Status, "1") ~ relevel(VegRSF, "5") + (1|CATID),
data=Panther3aorder, family="binomial"(link="probit"))

fm2 <- glmer(relevel(Status, "1") ~ SEASON + (1|CATID), data=Panther3aorder,
family="binomial" (link="probit"))

fm3 <- glmer(relevel(Status, "1") ~ relevel(VegRSF, "5") + SEASON + (1|CATID),
data=Panther3aorder,family="binomial" (1ink="probit"))

fm4 <- glmer(relevel(Status, "1") ~ relevel(VegRSF, "5") * SEASON + (1|CATID),
data=Panther3aorder,family="binomial" (1ink="probit"))

fm5 <- glmer(relevel(Status, "1") ~ relevel(VegRSF, "5") + SEASON + DIEL + (1|CATID),
data=Panther3aorder,family="binomial" (1ink="probit"))

fm6 <- glmer(relevel(Status, "1") ~ relevel(VegRSF, "5") + DIEL + (1|CATID),
data=Panther3aorder,family="binomial" (1ink="probit"))

fm7 <- glmer(relevel(Status, "1") ~ relevel(VegRSF, "5") = DIEL + (1|CATID),
data=Panther3aorder,family="binomial" (1ink="probit"))

fm8 <- glmer(relevel(Status, "1") ~ SEASON + DIEL + (1|CATID), data=Panther3aorder,
family="binomial" (link="probit"))

fm9 <- glmer(relevel(Status, "1") ~ SEASON * DIEL + (1|CATID), data=Panther3aorder,
family="binomial" (link="probit"))

fm10 <- glmer(relevel(Status, "1") ~ DIEL + (1|CATID), data=Panther3aorder,
family="binomial" (link="probit"))

fm1l <- glmer(Status ~ (1|CATID), data=Panther3aorder,family="binomial"
(link="probit"))

4. We can view the results of our modeling procedure to select the best model using
Akaike’s Information Criteria (AIC; Burnham and Anderson 2002).

anova(fml, fm2, fm3, fm4, fm5, fm6, fm7, fm8, fm9, fmi10, fmill)

Df AIC BIC logLik ligisq Chi Df Pr(>Chisq)

fmi1l 161402 161421 -80699

fmd 13 149423 149548 -74698 663.8778
fm7 13 149676 149802 -74825 0.0000

< 2.2e-16 ***
1.000000

2
fm2 3 161404 161433 -80699 0.0000 1 1.000000
fm10 3 161404 161433 -80699 0.0000 0 1.000000
fm8 4 161406 161445 -80699 0.0030 1 0.956448
fm9 5 161408 161456 -80699 0.0000 1 0.999375
fml 7 150108 150175 -75047 11304.2466 2 < 2.2e-16 **x*
fm3 8 150100 150178 -75042 9.4824 1 0.002075 *x
fm6 8 150087 150165 -75036 12.9562 0 < 2.2e-16 **x*
fmb5 9 150078 150165 -75030 10.7843 1 0.001024 =*x
4
0

. Similar to the random effect of individual animal in our models above (1|CATID), we
could use Multi-level Modeling with several mixed effects based on results above and
prior to running RSFs with additional covariates (Wagner et al. 2011).

. If we determine Diel period or Season influences resource selection, we could run
separate models based on these periods or use multi-level modeling to address this
variability among periods or seasons. Below, we will just run RSFs for a few key habitat
and development (i.e., urban development) covariates.

fml <- glmer(relevel(Status, "1") ~ relevel(VegRSF, "5") + EucMarshSh + Dist_Urban
+ Distance_t + (1|CATID), data=Panther3aorder,family="binomial")

fm2 <- glmer(relevel(Status, "1") ~ relevel(VegRSF, "5") + EucMarshSh + Dist_Urban
+ (1|CATID), data=Panther3aorder,family="binomial")

fm3 <- glmer(relevel(Status, "1") ~ relevel(VegRSF, "5") + EucMarshSh + (1|CATID),
data=Panther3aorder,family="binomial")

fm4 <- glmer(relevel(Status, "1") ~ relevel(VegRSF, "5") + Dist_Urban + (1|CATID),
data=Panther3aorder,family="binomial")

fm5 <- glmer(relevel(Status, "1") ~ relevel(VegRSF, "5") + Distance_t + (1|CATID),

data=Panther3aorder,family="binomial")
anova(fmi, fm2, fm3, fm4, fm5)

Panther3aorder$BinMarsh <- bin.var(Panther3aorder$EucMarshSh, bins=5,
method="intervals", labels=(c("1","2","3","4" "5")))

Panther3aorder$BinDistUrban <- bin.var(Panther3aorder$Dist_Urban, bins=5,
method="intervals", labels=(c("1","2","3","4" "5")))

Panther3aorder$BinDistRoads <- bin.var(Panther3aorder$Distance t, bins=5,
method="intervals", labels=(c("1","2", "3", "4" "5")))

fml <- glmer(relevel(Status, "1") ~ relevel(VegRSF, "5") + BinMarsh + BinDistUrban
+ BinDistRoads + (1|CATID), data=Panther3aorder,family="binomial")

fm2 <- glmer(relevel(Status, "1") ~ relevel(VegRSF, "5") + BinMarsh + BinDistUrban
+ (1|CATID), data=Panther3aorder,family="binomial")

fm3 <- glmer(relevel(Status, "1") ~ relevel(VegRSF, "5") + BinDistUrban + BinDistRoads
+ (1|CATID), data=Panther3aorder,family="binomial")

fmd4 <- glmer(relevel(Status, "1") ~ relevel(VegRSF, "5") + BinDistUrban + (1|CATID),
data=Panther3aorder,family="binomial")

fmb5 <- glmer(relevel(Status, "1") ~ relevel(VegRSF, "5") + BinDistRoads + (1|CATID),
data=Panther3aorder,family="binomial")

anova(fml, fm2, fm3, fm4, fmb)

143

Chapter 9

Spatial Epidemiology in WinBUGS

Contents
9.1 Data preparation in R i it e e e e 145
9.2 Raster manipulationin R 149
9.3 Datasummary in R 0 0 0 i i i i i e e e e e e e e 151
9.4 Data preparation of NDVI covariate 152
9.5 Data preparation for R2ZWinBUGS 000 155
9.6 Data preparation within ArcMap v v v v 160
9.7 Checkmodel @ @ i i i i i e e e e e e e e e 164
9.8 Loaddata i i i i i i i i e e e e e e e e e e e e e 164
9.9 Compilingchains. 0 i i i i i i e e e e e e e e 165
9.10 Load initial values 0 i e e e e e e 166
9.11 Sample monitor tool L e e e e e 166
9.12 Update tool o i i i i e e e e e e e e e e e e e e e e e e e 167
9.13 Further considerations i oo i e e 167
Figures
9.1 Adjacency matrix created in ArcMap using the Adjacency Toolbox. . . . 163
9.2 Compiling the model structure in WinBUGS. 164
9.3 Loading the data into WinBUGS. 165
9.4 Compiling the number of chains in WinBUGS. 165
9.5 Loading the initial values for each chain in WinBUGS. 166
9.6 Setting the sample monitor tool and initiating program to run in Win-
BUGS. .« . 167

WinBUGS is specialized program that can incorporate spatial variability in a variety
of modeling procedures so the general framework of running a model will be described. While
there are numerous concepts for spatial models and alternate ways to get models into
WinBUGS (e.g., R2WinBUGS), we will go over the basics of running heirarchical Bayesian
models in WinBUGS. Although we will not go over the concepts in detail, this short tutorial
should enable a novice to load models and data into the WinBUGS environment. All
pertinent data can be prepared in any platform but needs to be presented to WinBUGS in the
proper format. If not R then Notepad works well for this as the data needs to be presented as
comma-separated values to load the data. WinBUGS requires that each section be highlighted
or called in order to perform the components. The code to follow will assist in setting up data
for use in WinBUGS but an entire book would be needed to explain Bayesian Hierachical
Models so we will not cover the theory here. For those interested, we would recommend
attending a workshop and reading several books of varying levels of complexity such as
Hierarchical Modeling and Analysis for Spatial Data (Banerjee et al. 2004), Bayesian Disease
Mapping (Lawson 2009), and Applied Spatial Data Analysis with R (Bivand et al. 2008).

Sections 9.1 to 9.3 will detail the code necessary to create all necessary data within R.

These sections will enable the user to load in covariate data, extract data from within a
sampling gird, and send models to WinBUGS using R2WinBUGS. Sections 9.4 to 9.11 will
detail the process of entering the appropriate data directly into WinBUGS provided the
adjacency matrix and data is formatted properly.

9.1 Data preparation in R

1. Load the appropirate libraries, sample locations, and rasters of covariates used in this
project

library(sp)

library(lattice)

library(rgdal)#readOGR
library(rgeos)#gIntersection
library(raster)#to use "raster" function
library(adehabitatHR)
library(maptools)#readAsciiGrid
library(zoo)

rm(list=1s())

2. Load and clean up the location of samples collected during disease surveillance for moose

snowy <-read.csv("SnowySamples.csv", header=T)
str (snowy)

#Clean up by deleting extraneous columns if needed
snowy <- snowy[c(-20:-38, -40:-64)]
snowy$Status <- snowy$E_schneide

#Make a spatial data frame of locations after removing outliers

coords<-data.frame(x = snowy$X_Coordina, y = snowy$Y_Coordina)

utm.crs<-"+proj=utm +zone=13 +datum=NAD83 +units=m +no_defs +ellps=GRS80
+towgs84=0,0,0"

utm.spdf <- SpatialPointsDataFrame(coords= coords, data = snowy,
proj4string = CRS(utm.crs))

3. We now need to load some raster of layers for covariates that may be related to disease
occurrence

#Load DEM raster layer
dem <-raster("snowydem")
image (dem)

class(dem)
proj4string(dem)

#Now transform projections all to match DEM (i.e., Albers)
Albers.crs <-CRS("+proj=aea +lat_1=20 +lat_2=60 +lat_0=40 +lon_0=-96
+x_0=0 +y_0=0 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs")
snowy.spdf <-spTransform(utm.spdf, CRS=Albers.crs)
145

4. Now we can create a sampling grid that overlaps our disease locations by getting
boundary box information from our locations. We added 3 rows of cells (3610 x 3 =
10830) around our outer most samples to encompass all disease samples and neighboring
cells until we can figure out how to expand grid polygons in a simpler way.
Alternatively, simply use the coordinates from the boundary box (bbox code) of your
locations to create your sampling grid.

sublette.df <- as.data.frame(sublette.spdf)
str(sublette.df)

minx <- (min(sublette.df$x)-10830)

maxx <- (max(sublette.df$x)+10830)

miny <- (min(sublette.df$y)-10830)

maxy <- (max(sublette.df$y)+10830)

create vectors of the x and y points
x <- seq(from = minx, to = maxx, by = 3610)
y <- seq(from = miny, to = maxy, by = 3610)

#Alternate bbox code for spatial points
min max
#x -854784.4 -724665.0
#y 156859.0 247343.2

create vectors of the x and y points
#x <- seq(from = -854784.4, to = -724665.0, by = 3610)
#y <- seq(from = 156859.0, to = 247343.2, by = 3610)

create a grid of all pairs of coordinates (as a data.frame)
xy <- expand.grid(x = x, y = y)

class(xy)

str(xy)

#Identifiy projection before creating Spatial Points Data Frame
Albers.crs2 <-"+proj=aea +lat_1=20 +lat_2=60 +lat_0=40 +lon_0=-96
+x_0=0 +y_0=0 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs"

#NOTE: Albers.crs2 is needed because SPDF needs different projection command
than spTransform above

grid.pts<-SpatialPointsDataFrame(coords= xy, data=xy,
proj4string = CRS(Albers.crs2))

proj4string(grid.pts)

plot(grid.pts)

gridded(grid.pts)

class(grid.pts)

#Need to define points as a grid to convert to Spatial Polygons below
gridded(grid.pts) <- TRUE

gridded(grid.pts)

str(grid.pts)

plot(grid.pts)

146

#Convert grid points to Spatial Polygons in essence converting to a shapefile
gridsp <- as(grid.pts, "SpatialPolygons")

str(gridsp)

plot(gridsp)

class(gridsp)

summary (gridsp)

. Now convert gridpts to Spatial Polygons Data Frame for added flexibility in
manipulating layer

grid <- SpatialPolygonsDataFrame(gridsp, data=data.frame(id=row.names(gridsp),
row.names=row.names (gridsp)))

class(grid)

plot(grid)

names . grd<-sapply(grid@polygons, function(x) slot(x,"ID"))

text (coordinates(grid), labels=sapply(slot(grid, "polygons"),
function(i) slot(i, "ID")), cex=0.3)

#Let’s check to see if all grid cells are the same size?
summary (grid)

getSlots(class(grid))

class(slot(grid, "polygons")[[1]1])
getSlots(class(slot(grid, "polygons")[[1]1))

#Check area of each cell in the sampling grid in square meters
sapply(slot(grid, "polygons"), function(x) slot(x,"area"))
#[1] 13032100

#Grid cell size converted strto square kilometers
13032100/1000000
#[1] 13.0321 is grid cell size in square kilometers

. After loading moose sample locations and creating our sampling grid it is time to work
with more covariate data along with the DEM raster previously imported. We imported
DEM first earlier because we need to determine the projection information early on to
prepare our grid. It is easier to project moose data to fit a raster projection that vice
versa.

#The layer below is a mule deer HSI raster layer without disturbance from
#Sawyer et al. 2009 incorporated into a layer because mule deer are considered
#host for the parasite we are investigating

nodis <-raster("snowynodis")

nodis

plot(nodis)

summary (nodis)

#Need to remove NoData from mule deer HSI layer
nodis[is.na(nodis[])] <- 0

. Using functions from the raster package, we can calculate slope and aspect from DEM
layer imported above

slope = terrain(dem,opt=’slope’, unit=’degrees’)
aspect = terrain(dem,opt=’aspect’, unit=’degrees’)
147

dem #Now let’s see metadata for each layer
slope
aspect

plot(dem)
plot(grid, add=T)

. We also want to look at Land Cover data for this region and reclassify it into fewer
categories for each of comparison and manipulation

nlcdall <- raster("nlcd_snowy")
nlcdall #Look at raster values for the habitat layer
#Values range from 11 to 95

#0r plot to visualize categories in legend
plot(nlcdall)

#Reclassify the values into 7 groups

#all values between O and 20 equal 1, etc.

m <- c(0, 19, 1, 20, 39, 2, 40, 50, 3, 51,68, 4, 69,79, 5, 80, 88, 6, 89, 99, 7)
rclmat <- matrix(m, ncol=3, byrow=TRUE)

rc <- reclassify(nlcdall, rclmat)

plot(rc) #Now only 7 categories

rc #Now only 7 categories

class(rc)

#Check to be sure all raster have same extent for Stack creation
compareRaster (dem, slope,aspect,nodis,rc)
#[1] TRUE

. Minimize the size of the data for demonstartion purposes

B S S S S S S s s T s
g s
##NOTE: Code in this box was simply for demostration purposes to reduce overall
time for processing during class. Skip this section of code if using your
own data and your computer has the appropriate processing capabilities.

#First we will clip out the raster layers by zooming into only a few locatioms
plot(rc)

plot(grid, add=T)

points(snowy.spdf)

#Code below is used to just zoom in on grid using raster layer

e <- drawExtent ()

#click on top left of crop box and bottom right of crop box create zoom
newclip <- crop(rc,e)

plot (newclip)

plot(grid, add=T)

points(snowy.spdf, col="red")

#Clip locations within extent of raster
samp_clip <- crop(snowy.spdf,newclip)

lot (newclip)
P P 148

9.2

plot(samp_clip, add=T)

grid_clip <- crop(grid, newclip)
plot(grid_clip, add=T)

slope2 <- crop(slope,newclip)
aspect2 <- crop(aspect,newclip)
dem2 <- crop(dem,newclip)

HSI <- crop(nodis, newclip)

#Check to be sure all raster have same extent for Stack creation
compareRaster (dem2,slope2,aspect2,HSI ,newclip)
#[1] TRUE

grid <- grid_clip #rename clipped grid as grid to match code below
rc <- newclip #rename clipped Land Cover as "rc" to match code below
snowy.spdf <- samp_clip

#Create a Stack of all Raster layers

#This will take a long long time if rasters have a large extent

r <- stack(list(dem=dem2, slope=slope2, aspect=aspect2, "mule deer HSI"=HSI,
nlcd=newclip))

#END Demonstration code

HESFHH R
HESHHBHFHHAFHHBHHFHAFHH SR H RS HHAFH BB FRR SRS H RS H RS H R R R SR AR

Raster manipulation in R

. Now we want to combine all raster layers into a multi-layered raster called a "stack"

#Create a Stack of all Rasters
#This will take a long long time if rasters have a large extent
r <- stack(list(dem=dem, slope=slope, aspect=aspect, "HSI"=nodis, nlcd=rc))

nlayers(r) #Show how many layers are in the "r" stack
plot(r) #Visualize "r"
names(r) #Names of each raster in the "r" stack

. Then we can get a mean for each covariate for each 13 km? cell of our sampling grid

#Extracts all rasters within each sampling grid cell
ext <- extract(r, grid, weights=TRUE, fun = mean)

head(ext) #view the results
dem slope aspect mule.deer.HSI nlcd

#[1,] 2730.461 9.801106 227.6434 0.28312888 3.202686
#[2,] 2661.003 11.862190 120.0121 0.05178489 3.195367
#[3,] 2443.063 1.644629 136.0088 0.01859540 3.989930
#[4,] 2450.666 8.212403 199.1163 0.23681863 3.837849
#[5,] 2570.362 8.625199 212.5139 0.26878506 3.333714
#[6,] 2685.348 5.395405 205.6125 0.22692773 3.086528

149

B s S S s s
#NOTE above that for each grid cell in the sampling grid layer (i.e., grid),
the "extract" function resulted in means for dem, slope, aspect, and HSI
#for all sampling grid cells but "ncld" resulted in mean

#cover categories so need to run nlcd separate with more appropriate code
#(see below).
T

. Mean land cover category is not appropriate here so we need to handle Land Cover layer
(i.e., rc) separately

#Code below extracts nlcd by land cover category and determines how many
#cells of each type were in each sampling grid.

ovR = extract(rc,grid, byid=TRUE)

head (ovR)

#Summarize results by sampling grid ID

#Land Cover category and number of cells (30x30m raster cells)
tab <- lapply(ovR,table)

tab[[1]]

3

#18

tab[[48]]
3 4 5 7
#6618 80 95 167

B

#Code here thanks to Tyler Wagner, PA Coop Unit, for creating this loop
#to summarize proportions of habitat within each grid cell
g

Created land use categories

lus <- 1:7

Loop through and append missing land use categories to each grid cell
ovRnew <- list()

for(i in 1:length(grid) [1]){

Land use cats in a given cell

templ <- unique(ovR[[i]])

Give missing category 999 value

mal <- match(lus, templ, nomatch = 999, incomparables = NULL)

Get location (category of missing land use type)

miss <- which(mal%in%999)

ovRnew[[i]] <- c(ovR[[i]], miss)

}

New summary of land use in a grid cell
tab2 <- lapply(ovRnew,table)

tab2[[1]]

tab[[1]]

Proportions of all land cover tyges per grid cell
150

9.3

prop <- list()

for(i in 1:length(grid) [1]){

propl[[i]l] <- round((margin.table(tab2[[i]],1)/margin.table(tab2[[i]])),digits = 6)
}

#Function coredata is from the zoo package to convert the
#the proportions from a list to a matrix

M <- coredata(do.call(cbind, lapply(prop, zoo)))
colnames (M) <- NULL

#Transpose matrix so land cover become separate columns of data
matrix <- t(M)
matrix

#Now convert the matrix to a data frame so it is easier to manipulate
dfland <- as.data.frame(matrix)

#Assing column names to land cover
colnames(dfland) <- c("water","developed","forest","shrub","grass","crop","wetland")
dfland[1:5,]

. Now that we have Land Cover in a similar format as the DEM-derived data, we want to

convert ext(the combined extracted rasters) into a data frame so it is easier to
manipulate as well. The "extract" function in the raster packageis supposed to be able
to do this but does not work for some reason.

elecov <- as.data.frame(ext)
head(elecov)

Data summary in R

. To bring all of these datasets together for our intended purpose, we need to assign

sampling grid identification numbers to each moose sampled was located. We also need
to assign sampling grid cell identification for the covariate summaries so we can join all
into one master data set

#Plot and look at sampling grid ID

plot(grid)

text(coordinates(grid), labels=sapply(slot(grid, "polygons"), function(i)
slot(i, "ID")), cex=0.8)

#Now assign actual sampling grid IDs to the covariate summaries in "elecov"
elecov$id <- paste(grid@data$id)#, function(x) slot(x,"ID"))

demdata <- elecov[-c(5)]#rename to cleanup by removing incorrect nlcd column
head(demdata)

#We can now combine dem data with Land Cover data to get our master dataset for
#each sampling grid cell

data <- cbind(demdata, dfland) # rbind list elements

head(data)

data$GRID <- data$id #This is mai%%¥ just to a check on matching grid IDs for later

datal1:10,]

2. We also need to identify the sampling grid cell that each moose was located and match
the moose up with its respective covariate data based on grid cell ID

#First let’s assign the grid cell ID to each moose sampled

snowy2 <- over (snowy.spdf,grid)

snowy2[1:5,]

#Now add column to moose demographic data identifying sampling grid cell ID
new <- cbind(snowy.spdf@data,snowy2)

newl[1:5,]

#Now we need to "join" the appropriate covariate data to each moose sampled based on
#the sampling grid cell it occurred in (e.g., g953)

datal[1:5,]

data <- data[-c(13)]#remove duplicate id column or program throws an error

mydata <- merge(new, data, by=c("id"))

mydata[1:10,]

9.4 Data preparation of NDVI covariate

Normalized Difference Vegetation Index (NDVI) is a satellite-derived global vegetation
indicator based on vegetation reflectance that proivdes information on vegetation productivity
and phenology (Hamel et al. 2011). NDVI data comes in 15-day composite images, values
range from 0.0 to 1.0, and data manipulation is required to identify the parameter of interest
(e.g., peak timing of high quality vegetation). For our purpose, we will determine maximum
increase between successive NDVI sampling periods and the sum of bimonthly values for each
month they area available (i.e., May, July, September) similar to previous research (Hamel

et al. 2011)

1. We will start by importing individual rasters of our study site for each time period
NDVI was available. We will then combine all layers into a raster "stack' for ease of
manipulation.

ndviMay09 <- raster("may9_final")
ndviMay25 <- raster("may25_final")
ndviJunel0 <- raster("junelO_final")
ndviJulyl2 <- raster("julyl2_final")
ndviJuly28 <- raster("july28_final")
ndviAug29 <- raster("aug29_final")
ndviSepl4 <- raster("septl4_final")
ndviSep30 <- raster("sept30_final")
proj4string(ndviMay09)

#Create a Stack of all Rasters

r <- stack(list(ndviMay09=ndviMay09, ndviMay25=ndviMay25, ndviJunelO=ndviJunelO,
ndviJuly12=ndviJulyl12,ndviJuly28=ndviJuly28,ndviAug29=ndviAug29,
ndviSepl4=ndviSepl4, ndviSep30=ndviSep30))

nlayers(r)

plot(r)

names (r)
152

2. Then we can get a mean for each NDVT layer for each 13 km2 cell of our sampling grid
by extracting all rasters within each sampling grid cell. We will start first by creating
our own functions using the raster package.

#We will start by creating a function to determine
#maximum increase between successive NDVI periods
#NOTE: x[1] refers to the first layer in your raster stack

maxmay <- function(x){x[1]-x[2]}

maxjune <- function(x){x[2]1-x[31%}
maxjulyl <- function(x){x[3]-x[4]}
maxjuly2 <- function(x){x[4]-x[5]1%}
maxaug <- function(x){x[5]-x[6]}

maxseptl <- function(x){x[6]1-x[7]1}
maxsept2 <- function(x){x[7]-x[8]}

#Now perform the function on each raster in the stack
may <- calc(r,maxmay)

june <- calc(r,maxjune)

julyl <- calc(r,maxjulyl)

july2 <- calc(r,maxjuly2)

aug <- calc(r,maxaug)

septl <- calc(r,maxseptl)

sept2 <- calc(r,maxsept2)

3. We can plot out each layer in 4 x 3 dimensions if we want to look over what the function
created and determine values that resulted from performing the functions on each raster

group.

#Set up the figure layout
par (mfcol=c(3,3) ,mar=c(2,3.5,2,2) ,oma=c(3,3,3,3)) #Bottom,Left,Top,Right.

plot (may)
Create a title with a red, bold, italic font
title(main="May", col.main="black", font.main=4)

plot (june)
Create a title with a red, bold, italic font
title(main="June", col.main="black", font.main=4)

plot (julyl)
Create a title with a red, bold, italic font
title(main="July 1", col.main="black", font.main=4)

plot (july2)
Create a title with a red, bold, italic font
title(main="July 2", col.main="black", font.main=4)

plot (aug)
Create a title with a red, bold, italic font
title(main="Aug", col.main="black", font.main=4)

153

plot(septl)
Create a title with a red, bold, italic font
title(main="Sept 1", col.main="black", font.main=4)

plot(sept2)
Create a title with a red, bold, italic font
title(main="Sept 2", col.main="black", font.main=4)

. Now we can use the raster package to create functions to determine sum of the
bimonthly values for May, July, and September

#Start by creating a function to sum the bimonthly values for May, July,
#and September

summay <- function(x){x[1]+x[2]}

sumjuly <- function(x){x[4]+x[5]}

sumsept <- function(x){x[7]+x[8]1%}

#Now perform the function on each month that we have 2 layers of NDVI
maysum <- calc(r,summay)

julysum <- calc(r,sumjuly)

septsum <- calc(r,sumsept)

. Plot out each layer to look over what the function created and determine values that
resulted from performing the functions for each month.

windows () #opens a new graphic window if needed
par (mfcol=c(2,2))

plot (maysum)

Create a title with a red, bold, italic font
title(main="May", col.main="black", font.main=4)
plot(julysum)

Create a title with a red, bold, italic font
title(main="July", col.main="black", font.main=4)

plot(septsum)
Create a title with a red, bold, italic font
title(main="Sept", col.main="black", font.main=4)

. Now we need to get a mean for each covariate for each 13 km? cell of our sampling grid
similar to our DEM layer means

#Means for maximum increase

extmay <- extract(may, grid, weights=TRUE, fun = mean)
extjune <- extract(june, grid, weights=TRUE, fun = mean)
extjulyl <- extract(julyl, grid, weights=TRUE, fun = mean)
extjuly2 <- extract(july2, grid, weights=TRUE, fun = mean)
extaug <- extract(aug, grid, weights=TRUE, fun = mean)
extseptl <- extract(septl, grid, weights=TRUE, fun = mean)
extsept2 <- extract(sept2, grid, weights=TRUE, fun = mean)

#Means for bimontly sums
extmaysum <- extract(maysum, grid, weights=TRUE, fun
154

mean)

9.5

mean)
mean)

extjulysum <- extract(julysum, grid, weights=TRUE, fun
extseptsum <- extract(septsum, grid, weights=TRUE, fun

Now convert each matrix to a data frame so it is easier to manipulate then combine into
a single dataset

mayNDVImax <- as.data.frame(extmay)

juneNDVImax <- as.data.frame(extjune)
julilNDVImax <- as.data.frame(extjulyl)
jul2NDVImax <- as.data.frame(extjuly2)
augNDVImax <- as.data.frame(extaug)

seplNDVImax <- as.data.frame(extseptl)
sep2NDVImax <- as.data.frame(extsept2)

#Means for bimontly sums

mayNDVIsum <- as.data.frame(extmaysum)
julyNDVImax <- as.data.frame(extjulysum)
sepNDVImax <- as.data.frame(extseptsum)

#Bind all NDVI layers created above

Final NDVI <- cbind(mayNDVImax, juneNDVImax,juliNDVImax, jul2NDVImax,
augNDVImax,seplNDVImax,sep2NDVImax,mayNDVIsum, julyNDVImax, sepNDVImax)

head(Final_ NDVI)

#Assign actual sampling grid IDs to the covariate summaries in "Final NDVI"
Final NDVI$id <- paste(grid@data$id)
head(Final_NDVI)

. Now let’s extract covariate data for each moose sampled in the Snowy Range for future

analysis

#First let’s assign the grid cell ID to each moose sampled (n=39)

sublette2 <- over(sublette.spdf,grid)

sublette2[1:5,]

#Now add column to moose demographic data identifying sampling grid cell ID
new <- cbind(sublette.spdf@data,sublette2)

new([1:5,]

#Now we need to "join" the appropriate covariate data to each moose sampled
#based on the sampling grid cell it occurred in (e.g., g953)

Final NDVI[1:5,]

Sublettedata <- merge(new, Final NDVI, by=c("id"))

Sublettedatal[1:10,]

#Export the data as a text or csv file if needed
write.table(mydata,"SubletteData.txt", sep="\t")

Data preparation for R2WinBUGS

. Load the appropriate libraries

library (R2WinBUGS)
155

library(spdep)
library(maptools)
gpclibPermit ()
library(maptools)
library(plyr)

. Import dataset created previously

df <- read.table("SubletteData.txt", sep="\t")
head (df)
str(df)

#Clean up and remove missing data for disease status, sex, and age
summary (df $Status)

df <- subset(df, df$Status !="Unknown")

df$Status <- factor(df$Status)

summary (df$Status)

#Recode Sex classes and remove NAs
summary (df $Sex)

df <- subset(df, df$Sex !="")
df$Sex <- factor(df$Sex)

df$Sex2 <- as.character(df$Sex)

df$Sex2[df$Sex2 == "Male"] <- "1"
df$Sex2[df$Sex2 == "Female"] <- "O"
df$Sex2

#Recode Age classes and remove NAs

summary (df $Age)

df <- subset(df, df$Age !="")

df$Age <- factor(df$Age)

#Age classes

2-5 3 6+ Adult Calf Yearling

188 1 79 5 36 30

#Combine ages classes

df$NewAge <- df$Age

levels(df$NewAge)<-list(Yearling=c("Calf","Yearling") ,Adult=c("2-5","3","6+",
"Adult"))

summary (df$NewAge)

#Now convert age to numeric with Yearling=0 (baseline) and Adult=1
df$Age2 <- df$NewAge
df$Age2 <- as.character(df$Age2)

df $Ag€2 [df $Ageg == "Adult u] <— nqn
df$Age2[df$Age2 == "Yearling"] <- "O"
df $Age2

df$KillYear <- as.factor(df$KillYear)
summary (df$KillYear)

summary (df$KillYear)

#2008 2009 2010 2011 2012

1 150 45 107 36
156

3. Now we are going to re-create our spatial grid used in the previous code. Alternatively,
we could export the grid as a shapefile and import it here but this may be preferable if
sampling grid cell IDs match up

#Make a spatial data frame of locations after removing outliers

coords<-data.frame(x = df$X_Coordina, y = df$Y_Coordina)

utm.crs<-"+proj=utm +zone=12 +datum=NAD83 +units=m +no_defs +ellps=GRS80
+towgs84=0,0,0"

utm.spdf <- SpatialPointsDataFrame(coords= coords, data = df, proj4string =
CRS(utm.crs))

#Now transform projections all to match DEM (i.e., Albers)

Albers.crs <-CRS("+proj=aea +lat_1=20 +lat_2=60 +lat_0=40 +lon_0=-96 +x_0=0
+y_0=0 +ellps=GRS80
+towgs84=0,0,0,0,0,0,0 +units=m +no_defs")

df .spdf <-spTransform(utm.spdf, CRS=Albers.crs)

#NOTE: We added 3 cells around outer most samples to encompass all disease
#samples until can figure out how to expand grid polygons

sublette.df <- as.data.frame(df.spdf)

str(sublette.df)

minx <- (min(sublette.df$x)-10830)

maxx <- (max(sublette.df$x)+10830)

miny <- (min(sublette.df$y)-10830)

maxy <- (max(sublette.df$y)+10830)

create vectors of the x and y points
x <- seq(from = minx, to = maxx, by = 3610)
maxy, by = 3610)

y <- seq(from = miny, to

create a grid of all pairs of coordinates (as a data.frame)
xy <- expand.grid(x = x, y = y)

#Identifiy projection before creating Spatial Points Data Frame

Albers.crs2 <-"+proj=aea +lat_1=20 +lat_2=60 +lat_0=40 +lon_0=-96 +x_0=0
+y_0=0 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs"

#NOTE: Albers.crs2 is needed because SPDF needs different projection command

#than spTransform above

grid.pts<-SpatialPointsDataFrame(coords= xy, data=xy, proj4string =
CRS(Albers.crs2))

#Need to define points as a grid to convert to Spatial Polygons below

gridded(grid.pts) <- TRUE

#Convert grid points to Spatial Polygons in essence converting to a shapefile

gridsp <- as(grid.pts, "SpatialPolygons")

#Now convert gridpts to Spatial Polygons Data Frame for added flexibility in

#manipulating layer

grid <- SpatialPolygonsDataFrame(gridsp, data=data.frame(id=row.names(gridsp),

row.names=row.names (gridsp)))
class(grid)
plot(grid)

#Compute adjacency matrix and adj, N, sumNumNeigh required by car.normal using
157

#sdep package
shape_nb <- poly2nb(grid)

NumCells= length(shape_nb)
num=sapply (shape_nb,length)
adj=unlist (shape_nb)
sumNumNeigh=length(unlist (shape_nb))

. Run correlation on covariates to prevent modeling similar covariates

rcorr.adjust(df [,c("Status","water","developed","wetland","forest","shrub",
"grass","crop","HSI","dem","slope","aspect",'"ndviMay09", "ndviMay25",
"ndviJunel0","ndviJulyl2", "ndviJuly28",'"ndviAug29",'"ndviSepl4",
"ndviSep30"")], type="pearson")

. Prepare values for model inputs

Result<-df$Status2
Grid_ID<-df$ID
Sex<-df$Sex2
Age<-df$Age2

Dem <- df$dem
Slope<-df$slope

Aspect <- df$aspect

HSI <- df$HSI
Wat<-df$water
Dev<-df$developed
For<-df$forest
Shru<-df$shrub
Gras<-df$grass
Crop<-df$crop
Wet<-df$wetland

Maymax <- df$mayBigmax
Junmax <- df$juneBigmax
Julilmax <- df$juliBigmax
Jul2max <- df$jul2Bigmax
Augmax <- df$augBigmax
Seplmax <- df$seplBigmax
Sep2max <- df$sep2Bigmax
Maysum <- df$mayBigsum
Julsum <- df$julyBigsum
Sepsum <- df$sepBigsum

. Compute adjacency matrix and adj, N, sumNumNeigh required by car.normal function
in GeoBUGS

shape_nb <- poly2nb(grid)

NumCells= length(shape_nb)
num=sapply (shape_nb,length)
adj=unlist(shape_nb)
sumNumNeigh=length(unlist (shape_nb))

158

7. Define the model in BUGS language

sink("sublettepriors.bug")
cat ("

model

{
#Priors for CAR model spatial random effects:

b.car[1:NumCells] ~ car.normal(adj[], weights[], num[], tau.car)
for (k in 1:sumNumNeigh)

{
weights[k] <- 1
}
for (j in 1:NumCells)
{
epsil[j] ~ dnorm(O,tau.epsi)
}

#0ther priors

alpha ~ dflat()

betal ~ dnorm(0,1.0E-5)
beta2 ~ dnorm(0,1.0E-5)
beta3 ~ dnorm(0,1.0E-5)
beta4d ~ dnorm(0,1.0E-5)
beta5 ~ dnorm(0,1.0E-5)
beta6 ~ dnorm(0,1.0E-5)
beta7 ~ dnorm(0,1.0E-5)
beta8 ~ dnorm(0,1.0E-5)
beta9 ~ dnorm(0,1.0E-5)
tau.car ~ dgamma(1.0,1.0)
tau.epsi ~ dgamma(17.0393,4.1279)

sd.car<-sd(b.car[])
sd.epsi<-sd(epsil])
lambda <- sd.car/(sd.car+sd.epsi)

for (i in 1 : 339)

{

Result[i] ~ dbern(pil[il])

logit(pilil) <- mul[il

mul[i] <- alpha + betal*Sex[i] + beta2*Age[i] + beta3*Dem[i] + betad*Slope[i]
+ betab*Aspect[i] + beta6*HSI[i] + beta7#Dev[i] + beta8+*For[i]
+ beta9*Gras[i] + b.car[Grid_ID[i]] + epsilGrid_ID[i]]

}

} # end model

", £il1l=TRUE)

sink ()

159

Bundle data

bugs.data <- list(Result=Result, Grid_ID=Grid_ID, NumCells=NumCells,
sumNumNeigh=sumNumNeigh, num=num, adj=adj, Sex=Sex, Age=Age,
Dem=Dem, Slope=Slope, Aspect=Aspect, HSI=HSI, Dev=Dev, For=For, Gras=Gras)

8. Load initial values

inits1<- list(alpha = O, betal = 0, beta2 = 0, beta3 = 0, beta4d = 0, betab = 0,
beta6 = 0, beta7 = 0, beta8 = 0, betad = 0)

inits2<- list(alpha = O, betal = 0, beta2 = 0, beta3 = 0, beta4d = 0, betab = 0,
beta6 = 0, beta7 = 0, beta8 = 0, beta9 = 0)

inits3<- list(alpha = 0, betal = 0, Dbeta2 = 0, beta3 = 0, betad = 0, betab = 0,

beta6 = 0, beta7 = 0, beta8 = 0, beta9 = 0)

inits<- list(initsil, inits2, inits3)

Paramters to estimate and keep track of
parameters <- c("alpha","betal","beta2", "beta3", "betad", "betab", "beta6",
"beta7", "beta8", "beta9", "lambda")

MCMC settings
niter <- 150000
nthin <- 20
nburn <- 10000
nchains <- 3

9. Locate WinBUGS by setting path below specifically for the computer used.

bugs.dir<-"C:\\Program Files\\WinBUGS14"

Do the MCMC stuff from R

out <- bugs(data = bugs.data, inits = inits, parameters.to.save = parameters,
model.file = "sublettepriors.bug", n.chains = nchains, n.thin=nthin, n.iter=niter,
n.burnin=nburn, debug=TRUE, bugs.directory=bugs.dir)

print(out, 3)

9.6 Data preparation within ArcMap

A previous study on bovine tuberculosis (TB) in the northern lower peninsula of Michigan
used multivariate conditional logistic regression in a case-control design (Kaneene et al. 2002).
Kaneene et al. (2002) used 18 covariates and deer TB prevalence summarized in 3 x 3 blocks
(~23 km?2) in an area surrounding farms that resulted in P-values and Odds Ratios of risk of
disease. Note that this design does not borrow from strength or knowledge of data from
adjacent areas.

An alternative way is to link the disease status (positive or negative) of each farm
sampled to some landscape-level predictors. This is a multi-step process that can be done in
WinBUGS with data prepared in R or ArcMap depending on your level of experience or
comfort with either program. There are 3 major considerations to approaching spatial
epidemiology that was used in a study on bovine tuberculosis on cattle farms prepared in
ArcMap that is the basis for this section (Walltgé et al. 2014):

1. Spatial Resolution

First we overlayed a 5 x 5 km grid having a resolution of 25 km?, which is approximately
equal to a quarter township in size. We selected quarter townships as the proper
resolution given that township would likely be too coarse a scale and section would be
too fine a resolution for model convergence based on previous research with Bayesian
hierarchical models (Farnsworth et al. 2006, Walter et al. 2011). This would result in a
total of 368 cells covering the Modified Accredited Zone (MAZ; 5 counties) in Michigan
and we can then assign the value associated with each landscape-level predictor variable
to a farm in our study based on the grid cell that an individual farm was sampled from;
thus, all farms sampled from within a particular grid cell were assigned the same value
for each landscape-level predictor.

2. Covariates

It is very important that covariates are based on some a priori knowledge of factors
contributing to an increase in risk for infection of disease. To simply data dredge and
hope some covariates are contained within the top model(s) is wrong and a study should
not be designed this way. Researchers designing a study on spatial epidemiology should
consider the demographic variables of the host and/or reservoir and well as any
environmental or landscape variables that may influence host/reservoir distribution in
the landscape. To simply include elevation, slope, and aspect because previous
researchers included them is simply incorrect and should be avoided.

3. Distribution of data

The spatial extent of the data across the study area of interest is also of importance due
to limitations in computer processors. If the spatial resolution is small and the extent is
large and results in >2000 cells across your study regoin, it may take weeks to run
models or models may not run at all. The spatial extent of the data that would be
suitable to achieve objectives of the study should be determined prior to initiating
studies using Bayesian hierarchical modeling in WinBUGS.

9.6.1 Adjacency matrices with weights = 1

Spatial resolution can be handled and incorporated into modeling efforts using Intrinsic
Gaussian Conditional Autoregressive Models (ICAR) in WinBUGS using:
car.normal(adj[], weights[], num[], tau)

where:

Adjacency - a vector listing the ID numbers of the adjacent areas for each area
(this can be generated using the Adjacency Tool in R or ArcMap)

Number - A vector of length N (the total number of areas) giving the number
of neighbors for each area

Weights - A vector the same length as adj[] giving unnormalized weights
associated with each pair of areas

Thus, the random effect of the jth grid cell is conditional on the values of its (usually
= 8) neighboring cells. Adjacency matrices were created with the Adjacency for WinBUGS
Tool that provides a matrix relating one areal unit to a collection of neighboring areal units in
text files for use in WinBUGS (Fig. 7.1). In AlléclMap, an adjacency matrix can be created by

installing a Toolbox created by the USGS that will result in 3 separate textfiles. Results of
these textfiles can be used within your program to run models in WinBUGS.

1. Install Adjacency for WinBUGS Tool and follow program page for setup.

2. Create the adjacency matrix in the GUI that will result in 4 text files although we will
only need to use first 2 in our models:

(a)

Adj.txt identifies each cell by unique ID that is adjacent to cell 1, cell 2, cell 3, etc.,
in sequential order (NOTE: Cell ID is not in file, only IDs of adjacent cells)

2,3,4,40,
1,3,4,5,8,39,40,44,
1,2,4,5,8,

1,2,3,
2,3,6,7,8,39,43,44,
5,7,8,9,12,43,44,48,
5,6,8,9,12,

Num.tzt identifies the number of neighbors for each cell in Adj.txt

U1 00 0 W O 00

Raw.tzt is similar to Adj.txt with the exception that the first number refers to the
cell ID that the neighboring cells are adjacent to.

SumNumNeigh.txt shows the overall numbers of neighbors that will be manually
entered into WinBUGS code.

9.6.2 Adjacency weights other than 1

If we don’t want the adjacent 8 cells having equal weight, we can have weights based on
neighbours that share common boundaries (Rook) or that share common boundaries and
vertices (Queen). There are also distance-based matrices that can incorporate proximity,
population densities, or covariates such as age or sex (Earnest et al. 2007). Spatial resolution
other than equal weight in the surrounding 8 cells can be handled and incorporated into
modeling efforts using Conditional Autoregressive Models (CAR) in WinBUGS and can be
created using the GeoDa program.

Earnest et al. (2007) identifies terms to describe several adjacency matrices that were
based on neighborhood or distances that included:

1. Queen - neighborhood-based that refers to neighbors that share common boundaries and
vertices (n=8 neighbors)

2. Rook - neighborhood-based that refers to neighbors that share common boundaries only
(n=4 neighbors)

162

http://www.umesc.usgs.gov/management/dss/adjacency_tool.html
https://geodacenter.asu.edu/

Cell ID Adjacent cell IDs ‘

161,163,164,165,168,195,196,200|

190 | 193 194 197 %8
| ' |
| | [
| | 1
199
5, 200
19 196 105
1686
52 165
w2
158 61
167
159 164 163 168

‘ 130
- | 5 | 126 \ 129

Figure 9.1: Adjacency matrix created in ArcMap using the Adjacency Toolbox.

3. Weights - distance-based that refers to neighbors at various distances away are less
influential

4. Gravity - distance-based that refers to neighbors that are more populated have greater
influence

5. Entropy - distance-based that refers to neighbors that are closer provide more weight
than those farther away

6. Density - distance-based similar to Gravity except refers to neighbors that have greater
density and not just population size so takes into account area

7. Covariate - distance-based that identifies a priori knowledge of a variable as influential
in determining a regions or cells disease rate

9.6.3 Covariates

We can extract covariates within each grid cell for any variable we have a priori knowledge
that it may influence potential for transmission of TB. For example, the Michigan Department
of Agriculture and Rural Development (MDA) provided georeferenced data and herd size (i.e.,
number of cattle per farm) for all farms in the 5 county area of the Modified Accredited Zone
(MAZ) that encompassed about 8,074 km? of white-tailed deer habitat. We could have
included a herd size effect in all models because these effects have been shown to influence
Mycobacterium bovis (the bacteria responsible for TB) presence on farms or infection

probability for farms in Europe (O’Reilly and Daborn 1995, Hutchings and Harris 1997,
Phillips et al. 2003).

The main components of initiating a WinBUGS model section include:

1. Check Model
2. Load Data
3. Compiling chains

4. Load initial values

9.7 Check model

The Check Model component determines if the model structure is presented properly for the
program to run. If the model structure is appropriate, the bottom left corner of the screen will
read model is syntactically correct (Fig. 9.2).

model

{

for (i in 1 : NumFarms)

{

pos[i] ~ dbern(pilil)

logit(pilil) <- mulil

mu[i] <- alpha + betal*DeerDensity[i] + beta2*AP5yGrid[i] + beta3*PercWetland[i]

+ betad4*Sand[i] + betab*SoilpH[i] + beta6*PreFreql[i] + b.car([cellid[i]] + epsilcellid[il]
}

% WinBUGS14
File Tools Edit _Attributes Info_Model _Inference _Options _Docdle Map _Text Window _H

TBlogitmodel_GlobalFamsworth.

Status of command appears
stating “model is syntactically
correct” or with anerror

Figure 9.2: Compiling the model structure in WinBUGS.

9.8 Load data

The data needs to be separated by column and covariates reflect data for each positive and
negative animal sampled. Example code is just an abbreviated version of data but each piece
is separated by a comma after parenthesis for each variable. Note that the cell id is also
necessary to include in the Load Data section. If the data is loaded successfully, the bottom
left corner of the screen will read data loaded fg‘ig 9.3).

list (NumFarms = 762, pos=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
cellid=c(24,31,23,31,31,23,23,31,31,31,24,24,31,35,31,24,31)
AP5yGrid=c(0,0,4.545454545,0,0,4.545454545,4 . 545454545 ,0)

0:0.6,0,0.0,0.8.0,0.80. £.6,080.0.4.0.0.0.
Susiaesssn 0.1

19.6.0.0,0.0.6.0.0.0,
18.2,090.08.1.1.0
Beatt

B e P s PR Sy
0,0,1.6.0,0.8,0/9.0,0.1.0.0.0.0,8.0,0.6.0.018,0.0.0,

/0.8,0,0.9,0.9.1,1.9.00.0.

X
.mnmn.e. /5.2,0,0,0,0.8.0,0.0,0,9.0,0.0,0,0.8,0,0,0,0.8.0,0.0,0,0.2,0.1,0,0.0.0,0.0,0.8.0,0.0,00.2,0.8,0,0.8,0,0.0,0,
998110000000808500.008088000.00008085.00008085.00.00808.8.0.9.0.01093.
0,5.0,0.6,0,0.0,1.1.8.0.6.0.0.6.0,0.0,0.8.0.1.3.0,6.0,0.6.0,0.,0,0,0,0.6.0.0,6.0,

Comee 3T AT A 2151 2 10 31 38 31 30 3192 24323351 22,14 3817 34,31 23 SAMENREIAAIY
TA.TETETHETTA.TE60.08.47.60 00,71 67 72,7272 64,08 66 5957 £3,565.41 46,62 51,43, 68,89,

P 315310310 42 50 0,51 4,309, 309,352 370,310 330,31, 213.375.332.330 102,118,148, 751.335.348.330.347.240.346. 248, 348.3
20246346, 240, 347, 358,351,388 337 240, 548,340
Tabat 780, 00

nTa i o
e o s oA o
T pen e
Sa
e e b
e L T e e
=
oty 2 : e
e = e P
Status of command appears e ene e & e e s
stating “data loaded” or with 00.2.00. 1.00,100 00,25 00,
Pt bt
error identified 5.00.35 60.0,00,40,04,40 80,0 80.0 20,020,
e
Tl
fions
L s
e
s e !
3 e s)

17,0021

8057 03002 15 0324 10.234 038 0.8 08.1.06.0 030 980 03225 3025 041 D325 3 184 00 183 55,153 00.15.0013 035,09 7
.350.09..09.0.09. 1004004

Figure 9.3: Loading the data into WinBUGS.

9.9 Compiling chains

Here you need to load the number of chains you plan to run before selecting the compile
button. The number of chains will determine how many chains need to be loaded in the

subsequent step. If this step is appropriate, the bottom left corner of the screen will read
model compiled (Fig. 9.4).

14
ile Tools Edit_Astributes Info _Model Inference Options _Doodle Map _Text Window Help

sngsasan somnepIELS. .
B P A P e Fai
S eraesar asnsssssns o3

7500
00.0.00,1208.09
ST o 17.00:53,00.4%.00.8.80.706,808.00.38.00.

ey
e85 7100500050308 2 20 20854 08 34 20 22 20 41 20 b

vmnnnﬂnqnnnznqnln 0.00.6.02.6.00.10.50
“H0.6.0025,30 8 53 30.5.09.0 50,8 0,99 00.7 53,140 50,52 £8.5.06.11 50

£0.242100.48.90,10.00.9.00.9.90,0.00.0.09, 11, nnon-w:-msn-mmmucusn-mswumuwnu
status of command appears = T rrpr oy pyetor rre

voo T Taiazcezsas 30.6.00.2 50,47
stating “model " or 00.100,3 (7.00,19.00, 10.00.26 00,
with anerror .owoc:\n 20151001 0,40 20, 150 00 % so3voosan o wnw.omnww.vw.uw:muw.'w-nmw.

39/90,0.00,96.00.17,00.31,20/9.00.0.00,0.00,0

Frisrpepistp b arressape ity

sasT no.nolusooz‘oa.u&mwnuImnwounnﬂ.ﬂswzlnﬂ 23

£.05.20.0.0.60,85.00. 184 20.89.00. o0 050 a0 42 20 560 104 92376537 00 0 50,85 0557 D0 4 30 &
e

Figure 9.4: Compiling the number of chains in WinBUGS.

165

8 WinBUGS14

File Tools Edit Attributes Info Model Inference Options Doodle Map Text Window Help

| B Telogitmodel_GlobalFarmsworth.tb

Figure 9.5: Loading the initial values for each chain in WinBUGS.

9.10 Load initial values

To load initial values after compiling the 3 chains, you need to select drag a box over the term
list then seelct load inits. After doing this for each chain, you may have to select gen inits
until the bottom left corner of the screen reads initial values generated, model initialized (Fig.

9.5).

#Initial values for Markov chains.

list(alpha = O, betal = 0, beta2 =

beta7 0, beta8
list(alpha = 0, betal
beta7 = 0, beta8 = 0)

0)

0, Dbeta2 =

list(alpha = O, betal = 0, beta2 =

beta7 = 0, beta8 = 0)

9.11 Sample monitor tool

0, beta3

0, betal3

0, beta3

0, betad =

0, betad =

0, betad =

0, betab

0, betab

0, betab

0, betab

0, betab

0, betab

The Sample Monitor Tool allows WinBUGS to store every value it simulates for that
parameter. This will enable us to view trace plots of the samples to check convergence and to
obtain posterior quantiles for a parameter (Fig. 9.6). Parameters were set in the model

statement below:

#quantities of interest to monitor
params [1]<-alpha
params [2]<-betal
params [3]<-beta2

166

-

Sample Monitor Tool =
-Alpha o — 1

e - PORREE| (-
beg [0 g [DO0DD 4 [0 i

-Tau.car o |] e | e |]
-Tau.epsi o | e e el
-All beta *
-Deviance

Update Tool
-Number of iterations wwere — ==

updstes |3‘3|IIII_ rafrath ,FII&

-Refresh options o M
-Thin .

Figure 9.6: Setting the sample monitor tool and initiating program to run in WinBUGS.

params [4]<-beta3
params [5]<-betad
params [6]<-betab
params [10] <-lambda

9.12 Update tool

The Update Tool under Model in WinBUGS is used to set the number of iterations, refresh to
keep you up to date at what iteration the program is on, and the number to thin . This will
enable us to view trace plots of the samples to check convergence and to obtain posterior
quantiles for a parameter (Fig. 9.6).

9.13 Further considerations

1. Prior Distributions - Prior distributions (e.g., non-informative N (0, 100,000)) for each
of the parameters, and over the entire real line for 4 (e.g., an improper (flat) prior).
Prior distributions for the random effect describing region-wide heterogeneity and to
describe the spatial structure (e.g., intrinsic Gaussian conditional autoregressive (ICAR)
prior with a sum to zero constraint) should also be determined. Because of the marginal
specification for region-wide heterogeniety and spatial structure, prior distributions for
the precisions using simulations in WinBUGS should be determined using the psi metric
(Eberly and Carlin 2000).

2. Model Selection - candidate models can consist of different structures with strictly
additive effects, environmental predictorlsG(%an be grouped, such that they can all be

entered or removed from the models together. Also, to account for the spatial structure
of the data, random effects parameters can be included in some models to represent
region-wide heterogeneity and local clustering. Therefore, all models can consist of all
possible combinations of the grouped variables, other covariates, and random effects.
Deviance information criterion (DIC) can then be used to evaluate this candidate set of
models with DIC weights allowing for an intuitive comparison of the evidence in the
data for each candidate model. The weights are considered a measure of the strength of
evidence in the data for ith model being the "best" model of those within the candidate
set, and therefore provide a measure of model selection uncertainty (Burnham and
Anderson 2002, Spiegelhalter et al. 2002).

. Goodness-of-Fit - to examine the goodness-of-fit of the top model from candidate sets, a
numerical posterior predictive check can be conducted (Gelman et al. 2004). We can use
the total number of positive subjects (farm’s in our case) conditioned on the observed
covariate values in our sample as our test statistic. Generating the posterior distribution
of this statistic using parameter estimates from the marginal posterior distribution
contained in MCMC chains. Thus given each farm’s covariate values, we generated
estimates of individual infection probabilities for every location for each of the 250,000
iterations of our MCMC chains, and created a Bernoulli random variable using this
probability of M. bovis infection. We then summed these random variables across all
farms to create our test statistic. The posterior distribution of the test statistic was
created from the values of these test statistics across all iterations of our MCMC chains.
Finally, we can calculate the posterior predictive P-value as the probability of having
fewer M. bovis-positive farms then the total number of infected farms observed in the
sample based on this posterior distribution of the test statistic.

. Convergence and prior sensitivity - examination of correlation and trace plots, as well as
estimates of the corrected scale reduction factor for each parameter and multivariate
potential scale reduction factors can provide evidence that chains for each model had
converged. Additionally, the posterior distributions can be assessed to determine if they
are overly sensitive to prior specification.

168

Chapter 10

Miscellaneous Code

Contents

10.1 Remove or search for duplicated GPS locations in a data frame
10.2 Need to convert back to a matrix to be able to export the data or
manipulate the data 0 i e e e e e e e
10.3 Remove quotations marks around values in results table or printout
10.4 Bin numeric variables into categories 0.
10.5 Recode variablesin Remdr 0 000,
10.6 Jitter UTM coordinates before making SpatialPointsDataFrame
10.7 Remove extraneous locations or remove all data for a single animal by
animal ID L 0 o e e e e e e e e e e e e
10.8 Generate sequential numbers as ID’s for each location then add back
to original dataset L e e e e e e e
10.9 Rename data by deleting a portion of the string.
10.10 Rename levels of factor i i e
10.11 Recode numeric values as factors into categories
10.12 Force a DBRB class output to a data frame
10.13 Subset GPS locations by adaterange
10.14 Drivers for rdgal input/ouput but run command for complete list if
needed v v i it i e

10.1 Remove or search for duplicated GPS locations in a data frame

#Removes duplicate entries
#newgps <- newgps[!duplicated(newgps$DT),]

#Use code to look for NAs which are very bad and can cause code failure
#merge$DT

#Check for duplicates on a variety of data types

duplicated(HexPols2@polygons)#No duplicates here!
duplicated(deer.spdf@data)#No duplicates here!
duplicated(02)

10.2 Need to convert back to a matrix to be able to export the data or
manipulate the data

#Convert matrix from data.frame to export into csv file

mean <- as.matrix(summary$table) 169

#Write.table gives csv output of Summary. Be sure to specify the directory and
#the output files will be stored there

write.table(mean, file = "Distance.csv", sep =",", row.names = TRUE, col.names = TRUE,
gmethod ="double")

10.3 Remove quotations marks around values in results table or
printout

ml <-noquote(ml)

10.4 Bin numeric variables into categories

library(Rcmdr)
BinAlt <- bin.var(pelican$Altitude, bins=10, method=’intervals’,
labe]_S:C()l),727,)37,)4?,)57,76),777’78),797’?10’))

10.5 Recode variables in Remdr

NA = "NA"

o ="o"

1:200 = "1-200"

201:400 = "201-400"
401:600 = "401-600"
601:800 = "601-800"
801:1000 = "801-1000"
1001:1200 = "1001-1200"

1201:1400 = "1201-1400"
1401:1600 = "1401-1600"
1601:1800 "1601-1800"
1801:2040 "1801-2040"

10.6 Jitter UTM coordinates before making SpatialPointsDataFrame

#Jitter x coordinate before making dataframe
muleys$Xj <- jitter(muleys$X, factor=50, amount=NULL)
muleys$Yj <- jitter(muleys$Y, factor=50, amount=NULL)
coords2<-data.frame(x = muleys$Xj, y = muleys$Yj)
crs<-"+proj=utm +zone=12 +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0"
jitter.spdf <- SpatialPointsDataFrame(coords= coords2, data = muleys,
proj4string = CRS(crs))
proj4string(jitter.spdf)
points(jitter.spdf, col="red")
170

10.7 Remove extraneous locations or remove all data for a single animal by
animal ID

#Import original dataset

muleys <-read.csv("DCmuleysedited.csv", header=T)

str(muleys)

#Remove outlier locations and Mule deer D12 with too few locations

muleys <-subset(muleys, muleys$X > 599000 & muleys$X < 705000 & muleys$Y > 4167000
& muleys$id != "D12")

muleys$id <- factor(muleys$id)#This step must be done to completely remove D12

summary (muleys$id)

10.8 Generate sequential numbers as ID’s for each location then add back
to original dataset

seqIDs <-c(1:nrow(muleys))
muleys <- cbind(muleys,seqIDs)

10.9 Rename data by deleting a portion of the string

#Remove text using substring function
(i.e., "2004_Resident_1315_Adult" to "Resident_1315_Adult")
awp$code <- substr(awp$res_migl, 6, 24)

#Concatenate above with "Season" column to make unique categories
awp$season_code <- paste(awp$Season, awp$code, sep="_")

#Results in "Summer_Resident_1315_Adult"

10.10 Rename levels of factor

#0riginal age classes
2-5 3 6+ Adult Calf Yearling
188 1 79 5 36 30

#Recode variables within a column that are factors such as combining age classes
#Combine ages classes

df$NewAge <- df$Age

levels(df$NewAge)<-1list(Yearling=c("Calf","Yearling") ,Adult=c("2-5","3","6+","Adult"))

summary (df $NewAge)
#Yearling Adult

66 273
171

10.11 Recode numeric values as factors into categories

#0riginally we have multiple numbers of GPS locations that we

#want to recode into categories 1-4 or some other descriptor

#We will give NBLOCS a new name (LocsCat) in our dataframe, make it a
#factor (as.factor) then include breaks that we want to represent each
#category. For example, 0:100 represents category 1 with locations from
#0 to 100 m

merge$locsCat <- as.factor(recode(merge$NBLOCS, "0:100=’1’;101:500="2";
501:1000="3’; 1001:10000="4""))

10.12 Force a DBRB class output to a data frame

#Allows us to write diffusion coefficients from movement-based

#home range output to a more useable form

dafr <- do.call(rbind.data.frame, vv)

write.table(dafr, "DiffCoeff2.txt", sep="\t", append=TRUE, col.names=F)

10.13 Subset GPS locations by a date range

#First make original date field (GPS.Fix.Time) a Date

muleys$Date <- as.Date(muleys$GPS.Fix.Time, "%Y.%m.%d")

#NOTE: The date in GPS.Fix.Time is formatted 2011.12.31 so formats
#must match the date format in line of code above.

locs2012 <- subset(muleys, Date > "2011-12-31" & Date < "2012-12-31")

10.14 Drivers for rdgal input/ouput but run command for complete list if

needed
>getGDALDriverNames ()

name long_name create copy
AAIGrid Arc/Info ASCII Grid FALSE TRUE
AIG Arc/Info Binary Grid FALSE FALSE

DOQ1 USGS DOQ (01d Style) FALSE FALSE

DOQ2 USGS DOR (New Style) FALSE FALSE

EOOGRID Arc/Info Export EOO GRID FALSE FALSE

HFA Erdas Imagine Images (.img) TRUE TRUE

NITF National Imagery Transmission Format TRUE TRUE

USGSDEM USGS Optional ASCII DEM (and CDED) FALSE TRUE

172

Literature Cited

Aebischer, N. J., P. A. Robertson, and R. E. Kenward (1993). Compositional analysis of
habitat use from animal radio-tracking data. Fcology 74, 1313-1325.

Amstrup, S. C.,; T. L. McDonald, and G. M. Durner (2004). Using satellite
radiotelemetry data to delineate and manage wildlife populations. Wildlife Society
Bulletin 32(3), 661-679.

Banerjee, S., B. P. Carlin, and A. E. Gelfand (2004). Hierarchical modeling and analysis
for spatial data. New York: Chapman and Hall/CRC.

Benhamou, S. (2011). Dynamic approach to space and habitat use based on biased
random bridges. PLoS ONE 6(1), e14592.

Benhamou, S. and D. Cornelis (2010). Incorporating movement behavior and barriers
to improve kernel home range space use estimates. Journal of Wildlife
Management 74(6), 1353-1360.

Bhattacharyya, A. (1943). On a measure of divergence between two statistical
populations defined by their probability distributions. Bulletin of the Calcutta
Mathematical Society 35, 99-109.

Bivand, R. S., E. J. Pebesma, and V. GAémez-Rubio (2008). Applied Spatial Data
Analysis with R. New York: Springer.

Burnham, K. P. and D. R. Anderson (2002). Model selection and multimodel inference:
a practical information-theoretic approach, Volume 2nd. New York: Springer-Verlag.

Calenge, C. (2007). Exploring habitat selection by wildlife with adehabitat. Journal of
Statistical Software 22(6), 1-18.

Calenge, C. (2011). Package ’adehabitathr’.
Calenge, C. (2012). Package ’adehabitaths’

Clark, J. D., J. E. Dunn, and K. G. Smith (1993). A multivariate model of female black
bear habitat use for a geographic information system. Journal of Wildlife
Management 57(3), 519-526.

Cooper, A. B. and J. J. Millspaugh (2001). Accounting for variation in resource
availability and animal behavior in resource selection studies, pp. 243 —273. San
Diego: Academic Press.

Downs, J. A. and M. W. Horner (2009). A characteristic-hull based method for home
range estimation. Transactions in GIS]13;&5-6), 227-537.

Duong, T. (2007). ks: kernel density estimation and kernel discriminant analysis for
multivariate data in r. Journal of Statistical Software 21(7), 1-16.

Duong, T. and M. L. Hazelton (2003). Plug-in bandwidth matrices for bivariate kernel
density estimation. Nonparametric Statistics 15(1), 17-30.

Earnest, A., G. Morgan, K. Mengersen, L. Ryan, R. Summerhayes, and J. Beard (2007).
Evaluating the effect of neighbourhood weight matrices on smoothing properties of

conditional autoregressive (car) models. International Journal of Health
Geographics 6(54).

Eberly, L. E. and B. P. Carlin (2000). Identifiability and convergence issues for markov
chain monte carlo fitting of spatial models. Statistics in Medicine 19, 2279-2294.

Erickson, W. P., T. L. McDonald, K. G. Gerow, S. Howlin, and J. W. Kern (2001).
Statistical issues in resource selection studies using radio-marked animals, pp.
209-242. San Diego: Academic Press.

Farnsworth, M. L., J. A. Hoeting, N. T. Hobbs, and M. W. Miller (2006). Linking
chronic wasting disease to mule deer movement scales: a hierarchical bayesian
approach. Ecological Applications 16(3), 1026—1036.

Fauchald, P. and T. Tverra (2003). Using first-passage time in the analysis of
area-restricted search and habitat selection. Ecology 84(2), 282-288.

Fieberg, J. and C. O. Kochanny (2005). Quantifying home-range overlap: the
importance of the utilization distribution. Journal of Wildlife Management 69(4),
1346-13509.

Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin (2004). Bayesian data analysis.
New York: Chapman and Hall/CRC.

Getz, W. M., S. Fortmann-Roe, P. C. Cross, A. J. Lyons, S. J. Ryan, and C. C.
Wilmers (2007). Locoh: nonparametric kernel methods for constructing home ranges
and utilization distributions. PLoS ONE 2(2), e207.

Getz, W. M. and C. C. Wilmers (2004). A local nearest-neighbor convex-hull
construction of home ranges and utilization distributions. Ecography 27(4), 489-505.

Gillies, C. S., M. Hebblewhite, S. E. Nielsen, M. A. Krawchuk, C. L. Aldridge, J. L.
Frair, D. J. Saher, C. E. Stevens, and C. L. Jerde (2006). Application of random
effects to the study of resource selection by animals. Journal of Animal Ecology 75,

887-898.

Girard, L., J. Ouellet, R. Courtois, C. Dussault, and L. Breton (2002). Effects of
sampling effort based on gps telemetry on home-range size estimations. Journal of
Wildlife Management 66(4), 1290-1300.

Gitzen, R. A., J. J. Millspaugh, and B. J. Kernohan (2006). Bandwidth selection for
fixed-kernel analysis of animal utilization distributions. Journal of Wildlife
Management 70(5), 1334-1344.

Hamel, S., M. Garel, M. Festa-Bianchet, J. M. Gaillard, and S. D. Cote (2011). Spring
normalized difference vegetation index (ndvi) predicts annual variation in timing of
peak faecal crude protein in mountain ungulates. Journal of Applied Ecology 46,

282-589.
174

Horne, J. S., E. O. Garton, S. M. Krone, and J. S. Lewis (2007). Analyzing animal
movements using brownian bridges. Ecology 88(9), 2354-2363.

Hurlbert, S. H. (1978). The measurement of niche overlap and some relatives. Ecology,
67-77.

Hutchings, M. R. and S. Harris (1997). Effects of farm management practices on cattle
grazing behaviour and the potential for transmission of bovine tuberculosis from
badgers to cattle. The Veterinary Journal 153(2), 149-162.

Jenness, J. S. (2004). Calculating landscape surface area from digital elevation models.
Wildlife Society Bulletin 32(3), 829-839.

Johnson, A. R., B. T. Milne, and J. A. Wiens (1992). Diffusion in fractcal landscapes:
simulations and experimental studies of tenebrionid beetle movements. Ecology,
1968-1983.

Johnson, C. J., S. E. Nielsen, E. H. Merrill, T. L. McDonald, and M. S. Boyce (2006).
Resource selection functions based on use-availability data: theoretical motivation
and evaluation methods. Journal of Wildlife Management 70(2), 347-357.

Johnson, D. H. (1980). The comparison of usage and availability measurements for
evaluating resource preference. Ecology 61, 65-71.

Kaneene, J. B., C. S. Bruning-Fann, L. M. Granger, R. Miller, and B. A.
Porter-Spalding (2002). Environmental and farm management factors associated with
tuberculosis on cattle farms in northeastern michigan. Journal of the American
Veterinary Medical Association 221(6), 837-842.

Kernohan, B. J., R. A. Gitzen, and J. J. Millspaugh (2001). Analysis of animal space
use and movements, pp. 125-166. San Diego: Academic Press.

Kranstauber, B., R. Kays, S. D. LaPoint, M. Wikelski, and K. Safi (2012). A dynamic
brownian bridge movement model to estimate utilization distributions for
heterogeneous animal movement. Journal of Animal Ecology 81(4), 738-746.

Lawson, A. B. (2009). Bayesian disease mapping: hierarchical modeling in spatial
epidemiology. Boca Raton: Chapman and Hall/CRC.

Leban, F. A.; M. J. Wisdom, E. O. Garton, B. K. Johnson, and J. G. Kie (2001). Effect
of sample size on the performance of resource selection analysis, pp. 291 =307. San
Diego, California: Academic Press.

Loader, C. R. (1999). Bandwidth selection: classical or plug-in? The Annals of
Statistics 27(2), 415-438.

Manly, B. F. J., L. L. McDonald, and D. L. Thomas (2002). Resource selection by
animals: statistical design and analysis for field studies, Volume 2nd. Dordrecht:
Kluwer Academic Publishers.

Matusita, K. (1973). Discrimination and the affinity of distributions.
McGarigal, K. and B. J. Marks (1995). Fragstats: spatial pattern analysis program for

quantifying landscape structure. 175

Millspaugh, J. J., G. C. Brundige, R. A. Gitzen, and K. J. Raedeke (2000). Elk and
hunter space-use sharing in south dakota. Journal of Wildlife Management 64 (4),
994-1003.

Millspaugh, J. J., R. M. Nielson, L. McDonald, J. M. Marzluff, R. A. Gitzen, C. D.
Rittenhouse, M. W. Hubbard, and S. L. Sheriff (2006). Analysis of resource selection
using utilization distributions. Journal of Wildlife Management 70(2), 384-395.

Mohr, C. O. (1947). Table of equivalent populations of north american small mammals.
American Midland Naturalist 37, 223-449.

O’Reilly, L. M. and C. J. Daborn (1995). The epidemiology of mycobacterium bovis
infections in animals and man: a review. Tubercle and Lung Disease 76 Supplement 1,
1-46.

Ostfeld, R. S. (1986). Territoriality and mating system of california voles. Journal of
Animal Ecology 55(2), 691-706.

Pellerin, M., S. Said, and J. M. Gaillard (2008). Roe deer capreolus capreolus
home-range sizes estimated from vhf and gps data. Wildlife Biology 14 (1), 101-110.

Phillips, C. J. C., C. R. W. Foster, P. A. Morris, and R. Teverson (2003). The
transmission of mycobacterium bovis infection to cattle. Research in Veterinary
Science 74, 1-15.

Rees, E. E., E. H. Merrill, T. K. Bollinger, Y. T. Hwang, M. J. Pybus, and D. W.
Coltman (2011). Targeting the detection of chronic wasting disease using the hunter
harvest during early phases of an outbreak in saskatchewan, canada. Preventive
Veterinary Medicine 104, 149-159.

Rodgers, A. R. and J. G. Kie (2010). Hrt: Home range tools for arcgis r.

Sappington, J. M., K. M. Longshore, and D. B. Thompson (2007). Quantifying
landscape ruggedness for animal habitat analysis: a case study using bighorn sheep in
the mojave desert. Journal of Wildlife Management 71(5), 1419-1426.

Seaman, D. E.; J. J. Millspaugh, B. J. Kernohan, G. C. Brundige, K. J. Raedeke, and
R. A. Gitzen (1999). Effects of sample size on kernel home range estimates. Journal

of Wildlife Management 63(2), 739-747.

Seidel, K. D. (1992). Statistical properties and applications of a new measure of joint
space use for wildlife. Ph. D. thesis.

Skidmore, A. K. (1990). Terrain position as mapped from a gridded digital elevation
model. International Journal of Geographical Information Systems 4 (1), 33-49.

Spiegelhalter, D. J., N. G. Best, B. P. Carlin, and A. van der Linde (2002). Bayesian
measures of model complexity and fit. Journal of the Royal Statistical Society.Series
B (Statistical Methodology) 64(4), 583-639.

Wagner, T., D. R. Diefenbach, S. A. Christensen, and A. S. Norton (2011). Using
multilevel models to quantify heterogeneity in resource selection. Journal of Wildlife

Management 75(8), 1788-1796. 176

Walter, W. D., J. W. Fischer, S. Baruch-Mordo, and K. C. VerCauteren (2011). What is
the proper method to delineate home range of an animal using today’s advanced GPS
telemetry systems: the initial step, pp. 249-268. InTech - Open Access Publisher.

Walter, W. D.; R. Smith, M. Vanderklok, and K. C. VerCauteren (2014). Linking
bovine tuberculosis on cattle farms to white-tailed deer and environmental variables
using bayesian hierarchical analysis. PLoS ONE 9(3), €90925.

Walter, W. D., D. P. Walsh, M. L. Farnsworth, D. L. Winkelman, and M. W. Miller
(2011). Soil clay content underlies prion infection odds. Nature
Communications 2(200), 1-6.

Worton, B. J. (1995). Using monte carlo simulation to evaluate kernel-based home
range estimators. Journal of Wildlife Management 59(4), 794-800.

177

178

	Contents
	List of Figures
	Preface
	Acknowledgments
	Data Manipulation and Management
	Load R software and packages
	Geographic coordinate systems
	Projected coordinate systems
	Transformations between coordinate systems
	Import and format datasets
	Manipulate polygon data layer
	Manipulate raster data layer
	Creating a hexagonal polygon grid over a study area
	Creating a square polygon grid over a study area
	Creating buffers

	Climate Data Interpolation
	Incorporating background spatial layers
	Accessing climate data
	Cleaning raw climate data
	Using data in R
	Using data in ArcMap
	Importing dynamically downscaled global climate data

	Movement Methods
	Importing datasets from a web source
	Movement trajectories
	Distance between locations
	First Passage Time (FPT)
	Regular trajectories

	Home Range Estimation
	Kernel Density Estimation (KDE) with reference bandwidth selection (href)
	KDE with least-squares cross validation bandwidth selection (hlscv)
	KDE with plug-in bandwidth selection (hplug-in)
	Brownian Bridge Movement Models (BBMM)
	Movement-based Kernel Density Estimation (MKDE)
	Dynamic Brownian Bridge Movement Model (dBBMM)
	Characteristic Hull Polygons (CHP)
	Local Convex Hull (LoCoH)
	Minimum Convex Polygon (MCP)

	Overlap Indices
	Percent overlap
	Probability overlap
	Bhattacharyya's affinity
	Utilization distribution overlap index
	Hellinger's distance
	Volume of intersection index

	Three-dimensional Analyses
	Three-dimensional home range
	Three-dimensional exploration of digital elevation models (DEMs)

	Landscape Metrics
	Landscape metrics for a single area
	Landscape metrics within polygons
	Landscape Metrics within buffers

	Resource Selection
	Preparing linear measures
	Formatting layers for package spatstat
	Summarizing linear measures as covariates

	Preparing additional covariates
	Manipulating raster layers for inclusion in modeling procedures

	Selection ratios
	Resource selection functions
	Logistic regression

	Spatial Epidemiology in WinBUGS
	Data preparation in R
	Raster manipulation in R
	Data summary in R
	Data preparation of NDVI covariate
	Data preparation for R2WinBUGS
	Data preparation within ArcMap
	Adjacency matrices with weights = 1
	Adjacency weights other than 1
	Covariates

	Check model
	Load data
	Compiling chains
	Load initial values
	Sample monitor tool
	Update tool
	Further considerations

	Miscellaneous Code
	Remove or search for duplicated GPS locations in a data frame
	Need to convert back to a matrix to be able to export the data or manipulate the data
	Remove quotations marks around values in results table or printout
	Bin numeric variables into categories
	Recode variables in Rcmdr
	Jitter UTM coordinates before making SpatialPointsDataFrame
	Remove extraneous locations or remove all data for a single animal by animal ID
	Generate sequential numbers as ID's for each location then add back to original dataset
	Rename data by deleting a portion of the string
	 Rename levels of factor
	 Recode numeric values as factors into categories
	 Force a DBRB class output to a data frame
	 Subset GPS locations by a date range
	 Drivers for rdgal input/ouput but run command for complete list if needed

	Literature Cited

